发展科学的战略物理
学在物理学中,对物质世界的隐蔽本质的探索,当然也就是探索宇宙中最微小,最迅速,最富有活力和最遥远、最古老的部分。对原子核的研究同时也就是对星球内部以及银河系的起源和发展的研究。不仅如此,由于越出了我们普通人的经验,这种研究使我们称之为自然法则的各项实践行为准则受到最严峻的考验,并且有助于分清究竟在多大程度上,这些准则从任何意义上来说都是终极的准则,而且究竟在多大程度上,这些准则只是近似的实践准则,适合于具有我们这样的体积和生活节奏的动物。例如,人们也许会发现,在生物学和工业应用中都极为重要的能量不灭定律适用于或不适用于各个粒子和光的射线的交互作用。但不论结果如何,这个研究必然会使我们对宏观世界中能量不灭的意义有更多了解。理论物理学标志着我们知识的外层边界。它必然不仅能吸引最有创造才能的人而且也能吸引最善于思考的人。它的不少最概括的结论几乎不可避免地夹杂着有意无意地从前科学时代的信仰中汲取来的神秘的和形而上学的直觉成分,数量之多不下于从观察和实验得来的合理归纳成分。将来的工作有很大一部分将是如何消除这些妨碍发展的成分,不过要做到这一点,就有必要把我们解决物理学问题的方法建立在对宇宙及其发展有全面认识的更广阔的基础上。
现代物理学不但在理论方面大有可为。
它所包含的技术,如高压电,真空管和振荡电路,也可以用来改造许多其他学科学所能起的作用科,而且这些技术本身就是物理学和电器工业之间的一条有用的直接联系纽带。
双方已经有了一种十分复杂的互利关系。
科学界拿出有技术价值的设想,并作为报酬,接受进一步发展所必需的经费和新工具。电子管和振荡电路,如能进一步发展,将在科学界内外具有重要意义。电子显微镜已经是既成事实了。它的性能已经超过光学显微镜好几倍;电视的发展也同它有关。现在凡是能影响任何种类的辐射的东西都可以被人类观察到,能够穿透云雾见物的红外线望远镜已臻于完善。现在只要把这些方法用来解决其他学科的问题就可以引起一场同望远镜和显微镜所带来的革命相类似的革命。
振荡电路的新组合的可能性是无穷的。在具有数学和电器发明才能的人员的适当合作下,可以在愈来愈大的程度上利用它们来代替运算过程。
数学正随着这种应用变得机械化,不过在同时也开辟了一个数学化机器的新时代。这些新的数学物理方法可以用来控制仪器和机器,不是象迄今这样仅仅用于把人的意志传达给机器,而是用它来实际代替人进行观察和控制。已经可以通过红外线眼来监视工序,并且还能够找出肉眼看不到的差错。
我们将来有可能建立一门新机械学。
在其中,人类的智慧将主要用以设计完全自动运行、自动调节、自动修理的机器,从根本上消除由人来看管机器的必要性。
核物理学现在已经开始提供更大的无法预见的可能性了。
元素的嬗变已成为事实了,目前还是在半微观的规模上,不过已经发展得足以对化学和生物具有巨大价值了。通过诸如放射性钠或放射性磷之类的新放射性元素,我们现在有了发展科学的战略追踪单个原子运动的方法;因而也就是有了直接揭开消化和新陈代谢的秘密的方法。生物学应该准备充分利用这些方法去进行大量工作。
主要研究材料性质的几门较古老而且大半被人遗忘的物理学分支,现在正处于迅速改造的过程。直至前不久,只有在研究电场和粒子的碰撞时,物理学才涉及物质的内部结构;此外仅是根据对物质性质的初步认识而提出一些概括的概念硬度、弹性、可塑性等。这些概念是可以加以利用,然而却根本无法加以说明。最近,光学方面的发展以及对物质进行X射线和电子研究方面的发展已经完全改变了这种状态。物理学的一个巨大的新分支正在出现中。它和化学发生联系并且涉及固体或液体物质的结构。它的第一阶段是对现有形态的物质的原子结构进行研究。研究的结果,人们已经对技术性材料金属、陶瓷、纤维等的性质有所了解。所以需要朝这一方向发展是因为有可能创造出新的材料,不是用盲目实验的方法来创造新材料(这种方法永不会创造什么崭新的东西),而是通过充分利用结构理论来创造新材料,目的就在于使新材料具有人们所希望的任何性质。
我们对固体物质的认识已经越过认识结构的阶段而进一步力求理解结构是怎样改变的。摩擦和可塑性变形都同样地伴有局部发热和甚至材料熔解的现象。英国和苏联在这一方面同时开展的研究,必将对有关金属加工以及轴承、润滑、摩擦电、甚至还有火药爆炸问题的工艺过程产生深刻影响。另一个极有希望的领域是关于物质的边沿和表面的研究。这种科学所能起的作用研究在理论上的优点是可以展示物质的两维特点而不是三维特点,不过这种研究对于腐蚀、吸收、矿物浮选、催化以及物理学和化学边沿上的其他方法也具有极大的实用价值。
现代物理学范围扩大的结果之一,是现在已经有可能解释而不仅仅是描写我们地球的变化。这是牵涉核物理学的宇宙问题的一个特殊方面,因为我们必须到核物理学中去寻找构成地球的各种元素有的多有的少的原因。
不过,这些元素互相分开的原因以及这些元素在地壳或地球内部不同部分的分布情况,却是需要由新的晶体物理学加以研究的问题,同时在这个过程中,人们也许就能解答关于大陆和山脉的起源的历史问题以及关于地震原因和地震预测的眼前实际问题。在这里,迅速发展的地球物理学方法重力、磁力、电气和振动方法在理论方面以及在它们对合理勘探矿藏的贡献方面都有极大的前途。我们对地球表面的变化、即大气层和水界的问题当然尤其感到兴趣。不但这些问题对飞行、水力、渔业和航行等等的实际重要性大大增加了,而且现在我们开始认识到,它们对科学也有很大意义的,因为它们从本质上阐明了表面上看来毫无道理可言的生命的化学构成,因而也从本质上阐明了生命的起源。地质学本身仅能对这个问题为我们提供一半答案,另一半须由化学来提供。
化学过去一百五十年中化学的进展都应归功于拉瓦锡所开创发展科学的战略的化学大革命在实践中的应用。不过,人们还没有充分认识到在过去十年中已经由于应用了新的量子力学以及光谱分析和X射线分析等新方法而产生了另一场规模大得多的革命。
我们现在已经可以把电子和原子核的力学系统的行为和久已熟知的化学反应联系起来。起初,这当然仅仅促使人们对化学重新进行解释,不过,事情必然不是到此为止,必然还会建立一门比十九世纪的化学合理得多的新化学,就象十九世纪的化学比先前的实验化学更为合理那样。现在已经可以清楚地看出,早期化学所以表面上看来很简单,主要是由于它几乎仅仅研究单盐和气体分子。它把凡是无法解释的最基本的现象,如构成岩石的硅酸盐或者金属及其矿石的现象,干脆搁在一边。新方法已经把这一切都改变过来了,而且可能带来更大的变化。人们对硅酸盐化学,已有充分理解,说明它仅是单盐的电化学原理在结晶状态的复合条件下的应用。
不过这种认识,必然会对地质学与陶瓷、玻璃和水泥工业具有极大重要性。
在另一方面,金属化学证明具有与化学其余分支完全不同的性质。
这种性质是由游离电子的存在所决定的。
游离电子使金属具有特殊的光泽。虽然我们现代文明几乎完全建立在使用金属和合金的基础上,直到十年前,我们对金属和合金的全部知识都是通过尝试错误方法得来的纯经验知识。
这种方法和文明初期冶金工匠的方法在性质上毫无二致。