由是可见粒子所带的电荷在胶体粒子的溶解中起了某种重要作用。试举一个大家所知道的例子:当牛乳变酸时,其中的乳酪即凝结。法拉第早已发现盐可以使胶体黄金的溶液凝结,格雷厄姆也研究过这个现象。1882年舒尔茨(Schultze)注意到凝结力随盐的离子的化学价而不同。1895年林德(Linder)与皮克顿(Picton)发现一、二、三价离子的平均凝结力之比,约为1:35:1023。1900年哈迪证明活跃的离子所具的电性与肢体粒子所具的电性相反。1899年,本书作者根据概率的理论研究了这个问题,当时是根据这样的假定:要中和胶体粒子所带的异性电荷,使其凝结,需要把最低限度数目的单位电荷同时带到一定空间之内。离子所带的电荷与其化学价成正比,所以必须使两个三份的、或三个两价的、或六个单价的离子结合起来,而后才能具相同的电荷。根据数学计算,凝结力之比应为1:x:x2,这里x是一未知数,视系统的性质而不同。设x=32,则得1:32:1024,与上面说的观测的数值接近。这只是一个近似的理论,因为它把反号离子的稳定作用及其他扰乱因素都略而未论。但所用的方法似乎可以扩大应用于相似的现象,事实上还可以扩大应用于化学化合本身,类似的概率的考虑,现在也应用于化学的热力学,成为量子物理学的基础。
粘土内胶体的集合状况,决定重土壤的物理性质;当土壤的柔软成份凝聚时,这种土壤才能变得多孔而肥沃。而且由于原形厨具有胶体的结构,胶体的带电性与其他性质,对于生物学也有很大的关系。例如,化学价关系在生理学上的重要性,可以从迈因斯(Mines)在1912年所发现的一个例子中看出来:角鲛的心脏对于各种三价离子的作用的敏感度比对于二价离子(如镁)的作用的敏感度约强万倍。胶体凝结时通常会把包含这种胶体的组织毁坏,幸又可以设法保护这些胶体不受电解质的作用。
法拉第已经知道加入一点“胶冻”就可以防止盐类对于胶体黄金的沉淀效应。目那时以后,迈因斯(1912)与其他生理学家研究过许多这类自身形成乳胶的保护性的肢体。这种乳胶质似乎形成一种薄膜,覆蔽着胶状质点,不让它们与活动离子接触。
水的纯度经过反复蒸馏而增加,其导电度降落到一个极限值与每公升内大约10[-7]克分子的氢(H+)与羟(OH-)离子的浓度相当。如果在水里加酸,氢离子浓度自然增加,测量一种介质的酸度,常用这个量,不但在物理化学中常用,在土壤科学与生理学中尤其常用。例如在物理化学上,蔗糖的反转率(由葡萄糖变为果糖的变率)就与氢离子的浓度有关。在农业上,土壤的酸性程度乃是土壤是否需要用石灰处理的尺度。在生理学上,人血内适合于生命的氢离子浓度的最大范围似乎在10[-7.8]与10-[7.9]之间,常态界限为10[-7.5]与10[-7.3]。由常态反应改变到包含最大可能度的酸,只不过等于在五千万份水中加入一份盐酸而已。
动物体内包含有复杂的机制,以保持生命所必需的确切的调整。例如,霍尔丹(Haldane)与普利斯特列证明(1905年),呼吸神经中枢对于血内二氧化碳的稀微增加,感觉异常锐敏,这时呼吸作用骤然迅速,而排出多余的二氧化碳。后来更证明起控制作用的因素是受溶解的碳酸影响的血内氢离子浓度。此外还有直接的化学控制。血液与细胞组织内各种物质,如重碳酸盐、磷酸盐、氨基酸及蛋白质等与各种酸反应,而成中性的盐。这样,这些物质就保护细胞组织,免受酸的作用,而维持近似的中性,所以这些物质叫做“缓冲剂”。
营养问题的研究,在二十世纪头二十五年大有进步,特别是发现有一种饮食虽然足以供给所需要的全部能量却不能使发育保持下去。1902年,霍普金斯(Frederick
Gowland
Hopkins)爵士进行了他的标准的实验。他证明,如果饲以化学上纯净的食物,幼鼠停止发育,但如果加入少许新鲜牛奶,则发育又复开始。所以新鲜牛奶包含有霍普金斯所谓的“附属的食物因素”。这种因素是发育与健康所必需的。后来的研究者把这些物体分为几类,通常称为维生素。维生素A与D主要包含在动物脂肪,如乳酪与鱼肝油及绿色植物之内,但两者的分布略有不同。维生素A能防止感染,并能防止一种眼病,后来知道它与维生素D是两种东西。维生素D是正在成长的动物骨骼的钙化所必需的。以后又发现一种惊人的结果,证明:将紫外线照射于儿童身体或其食物之上,在避免佝偻病方面,效果与维生素D相同。1927年,有几个独立的研究者从食物中提取出可以造成这种效果的化合物,并研究了它怎样在紫外线的影响下变成维生素。这是一种复杂的醇类,叫做麦角醇,很快就从酵母中制造出来,能发光,从而提供一种“盛在瓶内的日光”。维生素B存在于各种谷类的外皮与酵母之内,可以防治神经炎和一种脚气病。东方吃精米的人多患这种病。维生素C存在于新鲜绿邑植物的组织和几种水果(特别是柠檬)内,可以防治坏血症。在美国近来还发现有第五种维生素,与维持生殖有关。差不多所有的维生素,只要有极少量,就可以产生特殊效果。这些维生素中有几种已经再分为两种或多种,因而增加了已知的维生素的总数。
内分泌器官对于动物机体的重要性,已经证明远远超出前人想象之上。除分泌肉眼可见的分泌物的腺体,如唾液腺之外,还有多种腺体倾注其分泌物于血液之内,向人体各部供应它们的健康与生长所必需的物质。
这些内分泌腺的机制与功能,一向视为神秘。1902年,贝利斯(Bayliss)与斯塔林(Starling)发现前人以为是神经反射作用造成的胰脏分泌是肠内酸质作用所产生、又由血液输送到胰脏的一种化合物诱导出来的。这种物质被他们命名为内分泌刺激物,平常是当胃内的酸性物进入肠内,需要胰液的作用时,才在消化过程中产生出来的。这一内分泌刺激物的发现,引起人们对于其他类似的内分泌物的注意。每一种内分泌物都在一个器官内产生,由血液输送至其它部分以显其功效。哈迪提议给予这些物质以“激素”的总名称。这个名称后来为贝利斯与斯塔林所采用,现在已经成为生理学上常用的名词了。
1922年初,班廷(Banting)与贝斯特(Best)从羊的胰脏中提取出一种物质,注射到割掉胰脏而患糖尿病的狗身上,可使其血液中糖的浓度减少,而恢复对于糖的消化能力。这种提取物是一种激素,名叫胰岛素。现时大量制造,用来减轻糖尿病,很有成效。
甲状腺激素对于身体与精神的健康都是必需的。幼年人缺少这种激素,发育便迟缓下来,而且可以形成一种叫做克汀病的白痴。患者的面貌呈特殊的形象。成年人缺少甲状腺激素,则发生所谓粘液性水肿。这种病可用甲状腺提取物医治,第七章内已经讲过了。另一方面,如果激素过多,则发生所谓格雷夫斯病,即突眼性甲状腺肿。甲状腺内的有效成分,叫做甲状腺素,1919年经肯德尔(Kendall)分析出来,其化学构造则在1926年经哈林顿(Ha-rington)测定。他还在实验室中把甲状腺素合成出来。甲状腺素含有大量的碘,食物中缺乏碘质可使人患病,只需服用碘盐,其效果有时与甲状腺提取物相同。饲养牛羊和其他牲畜的实验已经证明,动物的机体也需要碘和食物中的其他矿物质。
几百年来,人们已经知道割去性腺的某些效果,但直到近年才有人对这个问题进行精密的研究。这种工作可以说开始于1910年斯坦纳赫(Steinach)的实验。他证明阉割后的蛙所缺乏的特征,可以用注射别的青蛙睾丸物质的办法加以恢复。其后更有实验证明把生殖腺移植到阉割或衰老的动物身上,至少可暂时恢复青春的力量。