加利福尼亚的劳伦斯(E.Lawrence)教授发明一种加速器,名叫“回旋加速器”,离子在这装置里经过一个交流电场,和与之正交的磁场。这个装置使质子和氘核循半径递增的螺旋形的路径而运动,间续地进出于电场。为了达到交流电位的某一特定频率,离子总是在电力处在可以把离子进一步加速的运动方向上的时候进入电场。这样,劳伦斯得到了质子和氘核的强粒子流,其能量高达1600万伏特,而具有100微安的电流。这样获得的效果等于16公斤的纯镭所射出的α粒子。
这一类的装置无异是将极强有力的武器放在实验者的手里。科克罗夫特与瓦耳顿证明,可以用大约十万伏特的质子,使锂与硼产生人工的嬗变。从这种电压以至回旋加速器的几百万伏特,现代的实验室现在有了一系列能量范围很广的可以引起嬗变的射弹。
锂有质量为6和7的两种同位素。在质子的轰击下,有时一个质子进入7Li的梭。这样产生的8Be不稳定,立即分裂为两个快速的a粒子,即氦核,循相反方向射出。如果用氘核代替质子去作射弹,6Li捕获一个氘核之后,又产生一个8Be的核,但具有大量的剩余能量。这种8Be的核也象前一个反应一样,分为两个a粒子,但具有比质子进入7Li而产生的a粒子有更大的速度。7Li捕获一个氘核之后形成9Be,再立刻分裂为两个α粒子和一个中子。
这些不过是奥利芬特(Oliphant)和哈特克(Harteck)首先加以研究的嬗变的几个例子。仅借两万伏特就可以引起这种嬗变,来加速氘核射弹。以后还研究出许多复杂得多的变化。从实验获得许多新同位素,如质量为3的氢(3H),质量为3的氦氨(3He)。根据其释放的能量,可以算出这两种同位素的质量:
2H+2H=1H+3H+
2.0147+2.0147=1.0081+2H+0.
氢和氘的原子量就是阿斯顿用质谱仪算出的数值。至于上式中所释放的能量E值是根据观测质子在空气中的行程(14.70厘米)而算出的这种行程说明质子的能量为298万伏特。释放出的能量的3/4应归于质子的动能,因而E的总值为397万伏特。根据爱因斯坦的理论,质量与能量是等价的;质量减少dm相当于释放c2dm的能量(这里c表光速,以每秒厘米数计为3×10[10]),所以与397万伏特相当的质量为0.0042,因而3H的质量为3.0171。
劳伦斯和他的同事们利用在回旋加速器里形成的、能量为1600万伏特的高速氘核去轰击铋,把它转变为放射性同位素,同天然放射性产品镭E相同。这是一个很有兴趣的成果。同样质量为23的钠或钠盐被高速氘核所轰击,产生质量为24的放射性同位素。这种放射性的钠分裂时,发出一个β粒子,而形成质量为24的镁的稳定核,其半衰期为15小时。因此劳伦斯得到强的放射纳的源,可以作为镭的代用品,用于医疗工作。
查德威克与戈德哈伯(Goldhaber)使用γ射线将氘核2D分裂为质子与中子。齐拉德(Szilard)将质量为9的铁(9Be)分裂为8Be与一个中子。这一方法能否发展;取决于能否取得高能强γ射线。
在这一时期里得到250多种新的放射性物质。这些不稳定的同位素可能存在于太阳上,也可能存在于刚从太阳分出的地球上,但是随着地球变冷,它们便消失了,只留下衰变期很长的铀和钍了。
这些人工变化里,有些能量变化甚至比天然放射性分裂中的能量变化还要大。例如21,000伏特的氘核可以使一个锂原子变化,而发出2250万伏特的能量。因此可以赢得大量的能量,初看起来好象可以在这里得到原子能的无限源泉。可是在一亿(108)个氘核中大约只有一个可以发挥作用。所以出入相抵,我们所要供给的能量超过所获得的能量。而且就中子而论,中子自身只能用效率极低的方法获得。在1937年,的确,看起来好象用人工改变的方法从原子中获得有用能量,并没有多大希望。在这一点上,我们应当记得,在应用科学的历史上,以前希望没有这样大的前景,都曾经使得宗教界的先知们惊恐万状过。事实上,1939年哈恩(Hahn)和迈特纳(Meitner)就发现当铀原子被中子撞击时,它的核分裂为两个主要成分,各占其质量的一半左右,而且出现二、三或四个中子。乍一看来,这好象就是我们要寻找的垒集过程,但事实上只有一种铀的轻的同位素(其原子量为235而不是238)可以分解到有用的程度,可是只有微量的存在。首先发现质量为235的铀的是登普斯特,明尼苏达的尼尔(Nier)和纽约哥伦比亚的布思(Booth),邓宁(Dunning)与格罗斯(Grosse)旋即研究了它的分解。同样的过程也发生于钍。那时许多实验室异常努力地从事这些同位素的分离。虽然困难很大,但是由于战争的刺激,很快就把这个工作推向高潮。起初轻的铀235须从成分很大的U238分出,或用小孔弥散法,或用阿斯顿的质谱仪法。分量少时,由于中子的逃逸,不能引起连锁反应,因而这物质是稳定而无害的。可是如果将无害的两块物质放在一起,而超过一定的份量,分解就逐渐垒集起来,并引起巨大的爆炸。
化学反应是由原子外围的电子的变化引起的,这种爆炸却是由于原子核的破裂所致,自然是一件可怕得多的事情。一磅铀所发出的核能等于很多吨煤燃烧时产生的热能量。
原子量为238的铀可用以捕获中等能量的中子,而发射出电子。这个过程形成一种以前未知的元素,被命名为钚(Pu)。
为了和平的目的,可能需要用“缓和剂”来吸收一些在核反应中释放出来的中子,借以控制而且减缓核反应。有些轻的原子,如石墨形态的碳,及前面说过的重水里氢的同位素,都可用作缓和剂。铀238可以插入缓和剂的“堆”中,所释放出来的热能可以用来发电。
在1939-45的战争期间,美英两国的物理学家、化学家与工程师,群策群力,共同合作,在制造原子弹方面和德国人展开了生死攸关的竞赛,并且在这一竞赛中取得了胜利。庞大而复杂的原子工厂在美国一个空旷地区建立起来,1945年投在日本的两颗原子弹结束了战争。留给各国政治家的工作便是控制核能的使用,以期使它为人类造福而不是造祸。我们面前摆着可怕的危险,也许核能的威力会使各国恐惧,从而迫使各国走上和平的道路。战争的消除当是科学的最大胜利。