但莫尔顿、张伯林与秦斯对太阳系的起源提出一些猜测性的说明。如果在某一早期阶段,两个气体星运行到彼此邻近时,则将发生潮汐波。及至两星接近到某一临界距离时,这潮汐波即将射出长臂状的物质,然后再裂成具有适当大小与特性的物体,而形成地球与其他行星。但这一事件发生的可能性很小,据秦斯计算,伴随象我们的行星系的恒星,大约在十万个恒星中才有一个。
恒星演化的新学说,可以概括叙述如下:恒星是旋涡星云的旋臂中所飞出的大小相近似的气体团。它们发放辐射,其质量因而减少。又因其体积较大的发出辐射的速度较快,所以它们的质量逐渐趋于相等。
无论其温度与压力为何,最年轻的星最重,而辐射也最多。如果它们全由象地上的原子所组成,则温度与压力增高时,辐射也当随之而增加,情况就与上面所说的不相同了。这一证据又表示辐射能量大部来自我们所未知的几种类型的极端活跃的物质。这些物质当星衰老时即归于消逝,很可能是由于原子的嬗变,使物质湮灭并转化为电磁辐射。这样释放的能量是很大的,照相对论一节中所说:质量m可以转化mc2的能量,这里c为光速,每秒3×10[10]厘米,所以,一克质量的物质转化为辐射后,其能量等于9×10[20]尔格。由于物质湮灭或即便是适宜的嬗变,所释放出来的能量是很大的(见451页)。
天体物理学上的这一个新理论,使人想到牛顿《光学》书中的质疑第30所说的;“庞大物体和光不是可以互相变化的吗?物变为光与光变为物,是同似乎乐于变化的自然程序十分符合的。”
恒星可能正在化为辐射,宇宙间物质的命运不是直接化为空间的辐射,就是变成具惰性而不活动的东西,如构成我们世界的主要物质。地上的物质含有92个元素,自原子序数为1的氢,至原子店数为92的铀。如果还有别的元素存在,它们不是同位素,便是有更高的原子序数,其结构必较铀更为复杂。现在至少已经发现一个名叫钚。它们必然富有强烈的放射性,所以不会稳定,因而大多数可能早已失其存在了。从前以为光谱的证据说明物质的演化由简单而趋于复杂,自老年星中的氢,而趋于青年星中的钙。可是今天对于这事实的解释大不相同。人们认为这只表明,各种恒星中的情况,有利于氢或钙在其大气之中与其上辐射的放出。有些天文学家以为在恒星的演化中便伴有复杂原子的分裂,其中大部直接化为辐射,小部变为不活泼的灰分;这些灰分虽是宇宙变化的副产品,但却是组成我们身体和我们世界的物质。铀与镭或者是介于留在地上的这些活泼原始原子的最后残迹,与构成我们的不活泼元素两者中间的物质。
只有与我们所处的情况很相近的星球好象才有生命的可能。行星系可能是稀有的,我们的行星似乎不可能维持“别的世界上的生命”。
凯尔文的能量散逸原理指明了事物的最后的状态,在这种状态中,物质与能量都作均匀分布,而不再有运动的可能。现代理论虽然把其过程加以修改,但也得到相似的结论。宇宙所趋向的最后情况,乃是从活泼的恒星原子化作空间的辐射,与变成将熄的太阳中或凝冻的地球中的惰性物质而已。即令宇宙中物质全部毁灭,所产生的辐射也仅能使空间的温度增高几度罢了。秦斯算得:只有当温度增高到7.5×10[12]度时,空间方能为辐射与再度沉淀的物质所饱和。活动物质的原子遗存的概率和辐射浓聚于一处,使物质再度沉淀的概率,都非常渺小。不管我们等候这机会的来临需要等候怎样久的时日,永恒总是更久的。霍尔丹(J.B.S.Haldane)曾经提出一种看法[据爱丁顿告诉我,汉堡的施特尔内(Sterne)教授在谈话中也曾提出过这种看法],认为这种巧合的浓聚情形很可能在现有的宇宙消灭后,重新创造出一个新的宇宙——我们现在的宇宙或者就是在辐射弥漫的漫长年代以后,产生的。但是秦斯与爱丁顿都曾对我说,他们不相信这种说法。别种情况发生的机会更大,会防止那种很少可能的偶然情况发生。
在这些问题上,我们似乎不可能找到确实的证据。历史昭示我们需要谨慎从事。天体物理学的现代观点仅开始于数年以前,我们已经知道的比有待学习的实在还少得很。
相对论与宇宙
相对论提供的新的自然现,在其发展进程中,必然深刻地影响我们对于物质宇宙的观念。它在解释万有引力时,用引力场中呈现弯曲的自然路径的理论去代替吸引力的观念。这就不但在精密的实验中,导致稍有不同的结果,而且如我们以前所说过的,也完全改变了我们对于宇宙广袤的观念。
如果采用欧几里得的空间与牛顿的时间,则我们自然以为存在是无穷的。空间无限地伸至最远的恒星以外,时间则通达过去与未来,均匀而永恒地流逝着。
但是,如果我们的新时空连续区,由于物质的存在而表现弯曲,我们就进入另一思想境界了。时间或者仍然是无止境地从永久到永久地流逝着,而空间的弯曲则指示出一个有限空间的宇宙。设想我们以光速继续前进,则终将达到一个有限的境界,或重返回到我们的出发点。哈布耳估计整个空间约为威尔逊山大望远镜所可见到的那一部分的十万万倍,而这个望远镜能够看见我们星系以外的星云两百万个之多。这表明光线经行宇宙一周,约需千万万(1011)年。爱因斯坦曾描绘过一个三维的空间,其弯曲的方式正如我们在二维空间所谓的圆柱面那样。时间则相当于圆柱的轴线。德·西特(De
Sitter)则想象一个球面时空。如果我们向外旅行,去追寻更大的球,则我们终将达到一个最大的球。这里的时间,从地球上看去,好象停止不动。正如爱丁顿所说:“好象疯人的茶会,时间永远是六点钟,不管我们等候多久,总是看不到什么动静。”但是如果我们能够达到这个保守的天堂,则我们必定感觉在该处经历的时间,也依然流逝,不过其流逝的方向不同而已。
德·西特指出,这种从地球上所见的时间的变慢,有一轻微的证据。有些旋涡星云是我们所知道的最远的物体。它们光谱中的谱线,与地球上光谱的同一谱线比较,位置颇有移动,如哈布耳所指出的,绝大多数部移向红端。这现象经常被解释为由于旋涡星云具有很大的退行速度(比较其他任何天体的都大),这现象有时又被解释为宇宙的膨胀。十分可能,我们现在所观察的这一现象,就是从地球上可以看见的原子振动的变慢,即大自然的时计的速度的改变,或时间的尺度的变化。