伽利略-牛顿力学的基本定律(称为惯性定律)可以表述如下:一物体在离其他物足够远时,一直保持静止状态或保持匀速直线运动状态。这个定律不仅谈到了物体的运动,而且指出了不违反力学原理的、可在力学描述中加以应用的参考物体或坐标系。相对于人眼可见的恒星那样的物体,惯性定律无疑是在相当高的近似程度上能够成立的。现在如果我们使用一个与地球牢固地连接在一起的坐标系,那么,相对于这一坐标系,每一颗恒星在一个天文日当中都要描画一个具有莫大的半径的圆,这个结果与惯性定律的陈述是相反的。因此,如果我们要遵循这个定律,我们就只能参照恒星在其中不作圆周运动的坐标系来考察物体的运动。若一坐标系的运动状态使惯性定律对于该坐标系而言是成立的,该坐标系即称为“伽利略坐标系”。伽利略-牛顿力学诸定律只有对于伽利略坐标系来说才能认为是有效的。
相对性原理(狭义)为了使我们的论述尽可能地清楚明确,让我们回到设想为匀速行驶中的火车车厢这个实例上来。我们称该车厢的运动为一种匀速平移运动(称为“匀速”是由于速度和方向是恒定的;称为“平移”是由于虽然车厢相对于路基不断改变其位置,但在这样的运动中并无转动)。设想一只大乌鸦在空中飞过,它的运动方式从路基上观察是匀速直线运动。用抽象的方式来表述,我们可以说:若一质量M相对于一坐标系K作匀速直线运动,只要第二个坐标系K‘相对于K是在作匀速平移运动,则该质量相对于第二个坐标系K’亦作匀速直线运动。根据上节的论述可以推出:
若K为一伽利略坐标系,则其他每一个相对于K作匀速平移运动的坐标系K‘亦为一伽利略坐标系。相对于K’,正如相对于K一样,伽利略-牛顿力学定律也是成立的。
如果我们把上面的推论作如下的表述,我们在推广方面就前进了一步:K‘是相对于K作匀速运动而无转动的坐标系,那么,自然现象相对于坐标系K’的实际演变将与相对于坐标系K的实际演变一样依据同样的普遍定律。这个陈述称为相对性原理(狭义)。
只要人们确信一切自然现象都能够借助于经典力学来得到完善的表述,就没有必要怀疑这个相对性原理的正确性。但是由于晚近在电动力学和光学方面的发展,人们越来越清楚地看到,经典力学为一切自然现象的物理描述所提供的基础还是不够充分的。到这个时候,讨论相对性原理的正确性问题的时机就成熟了,而且当时看来对这个问题作否定的签复并不是不可能的。
然而有两个普遍事实在一开始就给予相对性原理的正确性以很有力的支持。虽然经典力学对于一切物理现象的理论表述没有提供一个足够广阔的基础,但是我们仍然必须承认经典力学在相当大的程度上是“真理”,因为经典力学对天体的实际运动的描述,所达到的精确度简直是惊人的。因此,在力学的领域中应用相对性原理必然达到很高的准确度。一个具有如此广泛的普遍性的原理,在物理现象的一个领域中的有效性具有这样高的准确度,而在另一个领域中居然会无效,这从先验的观点来看是不大可能的。
现在我们来讨论第二个论据,这个论据以后还要谈到。如果相对性原理(狭义)不成立,那么,彼此作相对匀速运动的K、K‘、K“等一系列伽利略坐标系,对于描述自然现象就不是等效的。在这个情况下我们就不得不相信自然界定律能够以一种特别简单的形式来表述,这当然只有在下列条件下才能做到,即我们已经从一切可能有的伽利略坐标系中选定了一个具有特别的运动状态的坐标系(K)作为我们的参考物体。这样我们就会有理由(由于这个坐标系对描述自然现象具有优点)称这个坐标系是”绝对静止的“,而所有其他的伽利略坐标系K都是”运动的“,举例来说,设我们的铁路路基是坐标系K0,那么我们的火车车厢就是坐标系K,相对于坐标系K成立的定律将不如相对于坐标系K0成立的定’律那样简单。定律的简单性的此种减退是由于车厢K相对于K0而言是运动的(亦即”真正“是运动的)。在参照K所表述的普遍的自然界定律中,车厢速度的大小和方向必然是起作用的。例如,我们应该预料到,一个风琴的大小和方向必然是起作用的。例如,我们应该预料到,一个风琴管当它的轴与运动的方向平行时所发出的音调将不同于当它的轴与运动的方向垂直时所发出的音调。由于我们的地球是在环绕太阳的轨道上运行,因而我们可以把地球比作以每秒大约30公里的速度行驶的火车车厢。如果相对性原理是不正确3。的,我们就应该预料到,地球在任一时刻的运动方向将会在自然界定律中表现出来,而且物理系统的行为将与其相对于地球的空间取向有关。因为由于在一年中地球公转速度的方向的变化,地球不可能在全年中相对于假设的坐标系K0处于静止状态。但是,最仔细的观察也从来没有显示出地球物理空间的这种各向异性(即不同方向的物理不等效性)。这是一个支持相对性原理的十分强有力的论据。
经典力学中所用的速度相加定理假设我们的旧相识,火车车厢,在铁轨上以恒定速度v行驶;并假设有一个人在车厢里沿着车厢行驶的方向以速度w从车厢一头走到另一头。那么在这个过程中,对于路基而言,这个人向前走得有多快呢?换句话说,这个人前进的速度W有多大呢?唯一可能的解答似乎可以根据下列考虑而得:如果这个人站住不动一秒钟,在这一秒钟里他就相对于路基前进了一段距离v,在数值上与车厢的速度相等。但是,由于他在车厢中向前走动,在这一秒钟里他相对于车厢向前走了一段距离儿也就是相对于路基又多走了一段距离w,这段距离在数值上等于这个人在车厢里走动的速度。这样,在所考虑的这一秒钟里他总共相对于路基走了距离W=v+w。我们以后将会看到,表述了经典力学的速度相加定理的这一结果,是不能加以支持的;换句话说,我们刚才写下的定律实质上是不成立的。但目前我们暂时假定这个定理是正确的。
光的传播定律与相对性原理的表面抵触在物理学中几乎没有比真空中光的传播定律更简单的定律了,学校里的每个儿童都知道,或者相信他知道,光在真空中沿直线以速度c=300,000公里/秒传播。无论如何我们非常精确地知道,这个速度对于所有各色光线都是一样的。用力如果不是这样,则当一颗恒星为其邻近的黑暗星体所掩食时,其各色光线的最小发射值就下会同时被看到。荷兰天文学家德西特(De
Sitter)根据对双星的观察,也以相似的理由指出,光的传播速度不能依赖于发光物体的运动速度。关于光的传播速度与其”在空间中“的方向有关的假定即就其本身而言也是难以成立的。
总之,我们可以假定关于光(在真空中)的速度c是恒定的这一简单的定律已有充分的理由为学校里的儿童所确信。谁会想到这个简单的定律竞会使思想周密的物理学家陷入智力上的极大的困难呢?让我们来看看这些困难是怎样产生的。