再者,让我们设定两个前提都是肯定的,让全称联系的情况跟以前一样,例如,让M属于所有N并且属于某个。N既可能属于所有O,也可能不属于任何O。可以说明端词间否定联系的词项例于是:白色的——天鹅——石头;可以说明端词间肯定联系的词项例证,我们找不到。原因与上述相同:我们的证明必须从特称前提的不定性质中推出。
如果全称联系与小词相关,即是说,M不属于任何,不属于某个N,那么N既可能属于所有O,也可能不属于任何O。可以说明端词间肯定联系的词项例证是:白色的——动物——鸟鸦;可以说明端词间否定联系的词项例子是:白色的——石头——乌鸦。如果两个前提都是肯定的,那么,可以说明端词间否定联系的词项例证是:白色的——动物一一雪;可以说明端词间肯定联系的词项例子是:
白色的——动物——天鹅。
所以,很明显,当前提在形式上相同,并且其中一个是全称的,另一个是特称的时,三段论在任何情况下都不能成立。如果中词属于或不属于每个主项的部分;或者属于一个主项的部分,不属于另一个主项的部分;或者不属于每个主项的全部;或者与它们的联系不定,在上述情况下,三段论都不能成立。以白色的——动物——人,白色的——动物一一无生物这些词项为例,可以说明这些情况。
综上所述,可以明显看到,如果词项之间的联系如同我们所描述的那样,那么,三段论必然可以产生。如果三段论成立,那么,词项之间必定具有这样的联系。同样清楚的是,在这个格中,所有的三段论都是不完善的(因为它们都是通过断定某些另外的前提而完成的,而这些另外的前提既不是必然隐含在词项中,也不是被设定的。例如,当我们用归谬法证明我们的结论时)。通过这个格,我们不能获得肯定的结论。一切结论,无论是全称还是特称,都是否定的。
如果一个词项属于一个主项的全部,另一个词项不属于这同一主项的任何部分;或者两个词项都属于同一主项的全部;或者两个词项都不属于同一主项的任何部分;那么,我把这个格称作第三格。在这个格中,中词即是两个端词都作其谓项的那个词项;端词即是指谓项;大词即是离中词较远的那个词项;小词即是离中词较近的那个词项。中词的位置处于两个端词之外,并且在最后。
在这个格中,我们也得不到一个完善的三段论。但无论端词与中词的关系是全称的还是非全称的,三段论是可能成立的。如果它们的关系是全称的,当P和R属于所有时,P必定属于有些R。因为肯定前提是可以转换的,S属于有些R,并且P属于所有已S属于有些R,所以P必定属于有些R。我们通过第一格得到了这个三段论这也可以用归谬法和论述予以证明。当两个词项都属于所有时,如果我们从S类中选择某个事物,譬如说,N,则P和都能属于它。所以P属于有些R。
如果R属于所有S,P不属于任何S,则三段论的结果必定是P不属于有些R。证明方法与上述相同,因为R、可以转换。跟上面的例证一样,这结果也可以通过归谬法得到证明。
如果R不属于任何S,P属于所有S,则三段论不能成立。可说明端词间肯定联系的词项是:动物——马——人;可说明端词间否定联系的词项是:动物——无生物——人。
如果两个端词都不表述任何S,三段论也不能成立。可说明端词间肯定联系的词项是:动物——马——无生物,可说明端词间否定联系的词项是:人——马——无生物。“无生物”
是中词。
因此,在这个格中,当词项间具有全称联系时,三段论在什么条件下能成立,在什么情况下不能成立,我们就很清楚了。当两个前提都是肯定的时,三段论就能成立,其结论是,一个端词属于另一个端词的部分。当两个前提都是否定的时,三段论便不能成立。当一个前提为肯定,另一个前提为否定时,如果大前提是否定,小前提是肯定,则三段论能成立。其结论是,一个端词不属于另一个端词的部分;如果相反,大前提是肯定,小前提是否定,则三段论不能成立。
但是,如果在两个端词中,一个与中词具有全称联系,另一个与中词具有特称联系,如果前提同为肯定,则无论哪个前提是全称的,三段论都必定成立。如果R属于所有,P属于某些人则P必定属于有些R;由于肯定前提是可以转换的,s属于某些P,由于R属于所有S,S属于某个P,R也属于某个P,所以,P也属于某个R。再者,如果R属于某些S,P属于所有S,则P必定属于某个R。证明的方法与以前相同。也可以根据归谬法以及论述来证明它,就像前面的例子一样。
如果两个前提一个是肯定的,一个是否定的,并且肯定前提是全称的,那么,当小前提是肯定的时,则三段论能成立。如果R属于所有人P不属于某个S,那么P必定不属于某个R(因为如果它属于所有R,R属于所有S,则P也属于所有S;但根据设定,它不属于任何S。如果我们选取某些P所不属于的S作例子,那么,这一结论不用归谬法也能得到证明)。但如果大前提是肯定,则三段论不能成立;例如,如果P属于所有S,R不属于某些S。可说明端词间全称肯定联系的词项是:有生物——人——动物;但我们找不到可以说明全称否定联系的词项。因为R虽然不属于某个已却又属于另一些S。如果P属于所有S,R属于有些S,那么P就属于有些R。但根据设定,它不属于任何R。我们必须像理解以前的例证那样来理解这种情况。
因为“一个词项不属于另一个”这一论述是不定的,所以说“不属于任何的也不属于有些”是真实的。但是,当R不属于任何S时,三段论不能成立。所以,很显然,在这种情况下,三段论不能成立。