可见,我们所必然了解的是在我们所探索的词项中相同的,而不是不同的或相反的。首先,因为我们研究的目的是要发现中词,中词在每个前提中必须是相同的,而不是不同的东西。其次,即使在有些例子中一个三段论碰巧能从所设定的相反属性以及不能属于同一主体的各种属性中推出,它们也可还原为我们已经论述过的类型。例如,如果B和是相反的或不能属于同一主体。因为如果我们设定了这些词项,就会有一个三段论。结论是,A不属于任何E。但结论不是从原来的词项中推出的,而是从上面所论述的类型中推出的。因为B属于所有A,但不属于任何E,所以B必定与某些H相同。再者,如果B和G不可能属于同一对象,那么就会有一个三段论。结论是,A不属于某些E。在这种情况中,中间格也能产生。因为B属于所有A,却不属于某些E,所以,B必定与某些H相同。因为“B和G不可能属于同一主项”这一陈述与“B与某些H是相同的”这一陈述是等值的。我们已经说明,H代表一切不能属于的属性。
可见,没有三段论能直接从上面的研究方法中产生。但如果B和F是相反的,B必定与某些H相同,则三段论就能通过这获得。由此可以推出,以刚才所论述的方式考虑问题的人没有看到某些B与某些H是等同的,所以他们去寻找必需方法以外的其他方法。
采用归谬法的三段论与直接证明三段论的规则相同,因为它们也是通过两个端词的伴随属性和为它们所伴随的属性而产生的。在这两种类型中,研究方法也是相同的;直接证明的三段论亦可借助相同的词项根据归谬法而建立。反之亦然。例如,要证明A不属于任何E。设定它属于某些E,那么,由于B属于所有A,A属于某些E,则也属于某些E。但根据假设,它不属于任何E。再者,A属于某些E是可以证明的;因为如果它不属于任何E,E属于所有G,则A不属于任何G。但根据假设,它属于所有。其他命题亦相同。在一切借助两个端项的伴随属性及为属性所伴随的情况中,用归谬法进行证明总是可能的。
就每个问题而言,无论采取直接三段论还是归谬法,研究总是相同的;因为两种证明都是从同样的词项中得到结果的。例如,设定已经证明A不属于任何E。因为如果A属于某个E,则可以推出,B也属于某个E,而这是不可能的。如果断定B不属于任何E,但属于所有A,那么很显然,A不属于任何E。再者,如果A不属于任何E是通过直接三段论得到的结论,如果断定A属于某些E,则我们能用归谬法证明它不属于任何E。其他例子亦同样。在每种情况中,我们必须采用某些共同词项(与已经设定的不同),证明结论虚假的三段论与这些词项相联系。这样,当这个前提转换而其他仍然不变时,三段论将通过同样的词项而变成直接的。直接证明与归谬法的不同之处在于:在直接证明中,两个前提都被确定为是真的。而在归谬法中,有一个前提被确定为是假的。
在我们后面讨论归谬法时,这些论点会变得更加清楚。现在,让我们设定这些都已经很清楚。无论是要求直接证明一个结论还是用归谬法去证明一个结论,我们都必须注意相同的词项。但是,在其他假设性的三段论中,例如,涉及到替换或性质联系时,研究所涉及的不是原来设定的词项而是被替换的词项,而研究的方法则与以前相同。但是,我们必须考虑和分析假设性三段论的不同类型。
每类命题都能按照上面所述的方式得到证明,但有些也用三段论的其他方式得到。例如,全称命题可以借助进一步的假设,通过适合于特称结论的方法而得到证明。因为设定和G是等同的,E只属于G,则A属于所有E;再者,确定D和G是相等同的。E只为G所表述,则A不属于任何E。我们也显然必须以这种方式考虑问题。
同样的方法也适用于必然三段论和或然三段论;因为研究的过程是相同的。无论它是或然的还是实然的,三段论都通过同样排列的词项得到。但是,在或然命题中,我们必须包括那些虽然不确实属于但也可能属于的词项,因为已经证明,或然三段论也是通过它们而获得的。其他指谓形式亦同样。
从上述分析中看得很清楚,不仅一切三段论都能通过这种方法得到,而且它们不能通过其他方式产生。已经证明,每个三段论都是通过已经论述过的一个格而产生的。在每个特殊情况中,除了通过词项的伴随属性和为词项所伴随的而外,它们不能以其他方式组合。因为前提是从它们之中构成的;中词是从它们之中发现的。因此,一个三段论不能通过其他词项产生。
在所有情况下,无论是在哲学中还是在各类技术和研究中,方法都是相同的。我们必须寻求每个词项的属性和主体,尽可能地找得多一些,然后通过三个词项研究它们,以这种方式反驳,以那种方式证实。如果要寻求真理,则必须从以真实联系为根据而排列的词项出发;如果要寻找辩证的三段论,则必须从以意见为根据的前提出发。