转换一个三段论即是将结论倒转,这样构成一个要么大项不属于中项,要么中项不属于小项的三段论。因为如果结论被转换,一个前提仍与以前一样,那么剩下的前提必定是无效的。如果它是有效的,则结论也必定是有效的。我们把结论转换成相矛盾的还是相反对的,这是有差异的;因为转换的方式不同,所产生的三段论也不相同。这从下面的解释中将会看得很清楚(“属于所有”的矛盾面是“不属于所有”,“属于某个”的矛盾面是“不属于任何一个”,而“属于所有”的反对面是“不属于任何一个”,“属于某个”的反对面是“不属于某个”)。
让我们假定,A述说所有C,已经通过中词B证明。设定A不属于任何C,但属于所有B,则B不属于任何C。如果A不属于任何C,但B属于所有C,则A不属于所有B,但根本不能推论出它不属于任何B,因为以前说过,全称命题不可能力最后格所证明。一般说来,不可能通过换位使全称的大前提无效,原因在于,反驳总是通过第三格;因为我们必须设定两个前提与小词相联系。
如果三段论是否定的,同样的道理也适用。假如A不属于任何C已经通过中项B得到证明,因此,如果设定A属于所有C,但不属于任何B,则B也不会属于任何C;如果A和B属于所有C,则A属于某个B,但根据假设它不属于任何B。
但是,如果结论是在相互矛盾的意义上被换位,则三段论也是矛盾的,不是全称的;因为前提中有一个特称,则结论也是特称的。假定三段论是肯定的并且在刚才所说的意义上被换位,因此,如果A不属于所有C,但属于所有B,则B不属于所有C,如果A不属于所有C,但B属于,则A不属于所有B。如果三段论是否定的,情况也相同。因为如果A属于某个C,但不属于任何B,则B不属于某个C,但不是绝对不属于任何一个。如果A属于某个C,B属于所有C,正像原来所假定的那样,则A属于某个B。
在特称三段论中,(1)当结论在矛盾的意义上被换位时,两个前提都是可反驳的;(2)当它在相反的意义上被换位时,两个前提都是不可反驳的。因为结果不再像在全称三段论中那样是一种反驳,即经过转换后所达到的结论缺少普遍性;相反,根本就没有反驳。(1)假定已经证明A属于某个C,因此,如果设定A不属于任何C,但B属于某个C,则A就不属于某个B。并且如果A不属于任何C,但属于所有B,则B不属于任何C。这样,两个前提都是可反驳的。(2)如果结论是在反对的意义上被转换,则没有一个前提是可反驳的。因为如果A不属于某个C,但属于所有队则B不属于某个C。但原来的假定尚未遭到反驳,因为可能属于某个,而不属于另一个。至于全称前提AB,根本找不到可反驳它的三段论;因为如果A不属于某个C,B属于某个C,则没有一个前提是全称的。如果三段论是否定的,情况也相同。因为如果设定A属于所有C,两个前提都可反驳;但如果它属于某个C,则没有一个前提可反驳,证明与以前相同。
在第二格中,不论换位在什么方式上进行,大前提也不能在相反对的意义上被反驳;因为结论总是通过第三格而获得的。而我们以前说过,在这个格中没有全称的三段论。但是,另一个前提却可以在与换位相同的意义上被反驳(所谓“在相同的意义上”,我的意思是指,如果转换是相反对的,反驳也是在相反对的意义上;如果是矛盾的,则反驳也是在矛盾的意义上)。
让A属于所有B,但不属于任何C,结论是BC。如果设定B属于所有C,AB不变,则A将属于所有C,这样就产生了第一格。如果B属于所有C,A不属于任何C,则A不属于所有B,这是最后格。如果BC是在相反对的意义上被换位,则AB被证明的方式与以前相同,而AC则是在相矛盾的意义上被反驳的。因为如果B属于所有CA不属于任何C,则A不属于有些B。再者,如果B属于有些C,A属于所有B,则A属于有些C,这样,相反意义的三段论便产生了。如果前提间处于相反对的关系,则证明也相同。
可是,如果三段论是特称的,当结论在相反对的意义上被转换时,则没有一个前提被反驳,正如在第一格中没有一个被反驳一样,但当结论是在相矛盾的意义上被转换时,两个都被反驳。设定A不属于任何B,但属于某个C,结论是BC。那么,如果设定B属于某个C,AB不变,则结论是A不属于某个C。但原来的前提是不可反驳的,它可能既属于某个又不属于另一个。再者,如果B属于某个C,A属于某个C,则三段论不能成立,因为没有一个断定是全称的。所以,AB就不可反驳。但是,如果结论是在相矛盾的意义上被转换的,则两个前提都可反驳。因为如果B属于所有C,A不属于任何B,则A不属于任何C;而以前它却属于某个C。再者,如果B属于某个C,A属于某个C,则A属于某个B,如果全称陈述是肯定的,则证明与以前相同。
在第三格中,当结论是在相反对的意义上被转换时,那么,在任何三段论中都没有一个前提可被反驳;但如果是在相矛盾的意义上被转换,则在一切三段论中两个前提都可被反驳。假如已经证明A属于某个B,设定C是中词,所有前提都是全称的。因而如果设定A不属于某个B,B属于所有C,则与A和C相联系的三段论便不会产生。如果A不属于某个B,但属于所有C,则没有与B和C相联系的三段论。如果前提不是全称的,也会有相同的证明。因为通过转换,要么两个前提都必然是特称的,要么小前提是全称的。我们以前说过,在这些情况下,三段论在第一格以及在中间格中都不能成立。
但是,如果结论是在相矛盾的意义上被转换,则两个前提都可被反驳。因为如果A不属于任何B,B属于所有C,则A不属于任何C。再者,如果A不属于任何B,但属于所有C,则B不属于任何C。如果另一个前提不是全称的,则同样的道理也适用。因为如果A不属于任何B,B属于某个C,则A不属于某个C。如果A不属于任何B,但属于所有C,则B不属于任何C。