所谓“述说所有的”,即是说它并不是只可作为一个主项的谓项,却不能作为另一个主项的谓项,在某时可作为谓项,而在另一时又不行。例如,如果“动物”可以作一切“人”的谓项,如果说A是一个人是真实的,那么说A是一个动物也是真实的。如果前一个论断现在是真实的,那么后一个论断现在也是真实的。如果点在线中,则情况也是一样的。对于这一定义,有这样的事实作根据:我们对一个与“可述说所有的”相关的命题所提出的异议,要么不是它的真实事例,要么在那时谓项并不适用于它。
说一个事物“就其自身”是指,它是另一事物的本质因素。例如,一条线属于三角形以及点属于线。因为其实体乃是由它们构成的。它们是描述其本质定义的一个因素。它是一个其本质定义包括着它自身所从属之主体的属性。例如,直和曲属于线,奇和偶、单一和复合、正方形和长方形属于数。它们各自的本质定义都包含着线或数。我说过的其他那些是就其自身而言属于他物的东西也是如此;反之,不在上述任何一种意义上所属于的就是偶性③。如“有教养的”和“白的”就是动物的偶性。不述说其他某个主体的东西也是就其自身而言的。例如,“行走”并不是某个另外的行走者在行走。“白”亦然。但是,实体,或表示个体的东西却不是与其自身相异的。因而,我把不述说某个主项的事物叫做“就其自身”而言的,把述说某个主项的东西称作偶性。在另一种意义上,由于自身的性质而属于他物的是“就其自身”而言的。不是由于自身的性质属于他物的是偶性。例如,一个人行走时,天空打了个电闪,这就是偶性。因为天不是因为他在走路而打电闪的,我们认为,它乃是偶然出现的。但如果一件事物的发生是由于其自身的性质,那它就是就其自身而言的。例如,某物被杀死,并且由于“杀”这一行为而死去,因为它死亡的原因是被杀,所以它被杀而死就不是一个偶性。就纯粹的知识而言,我们称作“就其自身”的东西,无论内在于它们的主项之中,还是为它们的主项所包含,都是由于它们自身的性质并且是出于必然的。它们不可能不属于主项,总是或者在总体上属于,或者按相反属性同属一主项的:方式而属于。例如直和曲之于线,奇和偶之于数。因为一个属性的反面,要么是缺失,要么是同一个种之下的矛盾面。例如,在数上,非奇数即是偶数。因为偶数是随着非奇数而出现的。这样,由于一个属性必定要么肯定于要么否定于一个主体,所以,就其自身而言的属性必然属于它们的主体。
关于“述说所有的”及“就其自身”的定义就说这么多。至于“普遍”,我是指这样的事物,它作为“述说所有的”而属于其主体,并且是“就其自身”和“作为自身”而属于那个主体的。这样,十分明显,所有的“普遍”都必然属于它们的主体。“就其自身”而言与“作为自身”相等同,例如,“点”和“直”就其自身而言属于“线”,因为它们也是作为线而属于它的;“其内角之和等于两直角”是作为三角形而属于三角形的,因为三角形就其自身而言就是其内角之和等于两直角。只有当一个属性被证明是属于那个主体的例证,并且是在最初意义上属于那个主体时,它才是普遍属性。例如,“其内角之和等于两直角”并不是普遍地属于“形状”(诚然,我们可以便某一形状的内角之和等于两直角,但却不能证明任一形状的内角和等于两直角,一个人也不能运用任一形状来证明。例如,正方形是一个形状,但它的内角却并不是等于两直角)。再者,任一等腰三角形都有等于两直角之和的内角,但它不是满足这一要求的最初形状,而是三角形先于它。这样,能被证明在任何情况中都在最初意义上满足包含两直角之和的内角这一条件并且也满足任何其他条件的那个事物,就是普遍属性在最初意义上所属于的那个主体;对这个谓项普遍真实地属于其主体的证明在它们之间建立了一种就其自身而言的联系,反之,与其他谓项所建立的联系在某种意义上却不是就其自身而言的。再者,“其内角之和等于两直角”也不是等腰三角形的普遍属性;它具有更广泛的范围。
我们必须注意到,有一个错误是经常发生的。我们所努力证明的属性,在我们看来在某种意义上是首要的和普遍的,却被证明不属于首要的和普遍的。我们之所以犯这一错误,要么是由于我们不能发现与个体相分离的更高的东西,要么这样的东西存在,但它应用于不同属的对象时却没有名字,要么证明的主体碰巧是作为另一事物一个部分的整体。尽管证明适用于包含在它之中的所有特殊事物可以作为它的全体的谓项,但证明仍然不能首要地和普遍地适用于它。当我说证明首要地和普遍地适用于一个主体时,我的意思是说它本身首先是属于那主体的。
如果要证明垂直于同一条线的两条线从不相交,就可以设定垂线的这种性质是证明的适当主体,因为它适用于所有垂线。但实际并非如此,因为这个结果的推得,并不是因为这些角以这种特殊方式相等,而是因为它们完全相等。
再者,如果等腰三角形是唯一的三角形,那么,关于它包含着等于两直角之和的内角的证明就会被认为是作为等腰三角形而属于它的。
此外,“比例交替”的定律可被认为属于作为数的数,也同样属于线、体和时间阶段,一一就像它曾经被分别证明过的那样,虽然可以借助一个证明论证它们全体。但是由于缺少表示数、线、时间、体的共同性质的单一名词,它们在属上各不相同,所以它们被分别处理。但现在这条法则已被证明是普遍的,因为这种属性不是作为线或者作为数,而是作为拥有这种特殊性质而属于它们。它们被设定普遍拥有这种性质。如果一个人,无论他是否用一种证明,分别证明了每类三角形一一等边的、不等边的、等腰的——的内角和等于两直角之和,那么他除了在诡辩的意义上说而外,自然不知道一个三角形的内角和等于两直角之和,或者说它是三角形的普遍属性,即使除了这些而外再无别的三角形。因为他不知道这种属性是作为三角形而属于一个三角形,也不知道它属于每一个三角形,即使除这些三角形以外别无其他种类,他不知道它是专门属于每个三角形的,即使不存在他不知道拥有它的三角形。