远距通信是从眼睛看得见的信号开始的。散布乡间的许多“烽火台”,是久已废弃的信号岗位的遗迹。它们曾把拿破仑登陆的消息迅速地传达到了伦敦。电方面的每一个新发现都促使人们提出一些使用电报通信的意见,但在安培把他研究电磁所得的结果加以应用以前,这些意见都没有什么结果。在安培的成果发表以后,实际机器的发明与采用,就仅仅是机械师的技巧与金融界的信任问题了。
1827年左右,欧姆(GeorgSimon
ohm,1781-1854年)做出很多贡献,帮助从电的现象中抽绎出几种能够确切规定的量来。他用电流强度与电动力的观念代替了当时流行的“电量”和“张力”等模棱的观念。电动力一词相当于静电学中已经使用的“电位”。当张力或压力很高的时候,要将电从一点运到他点,必需要较多的功,因此电位差或电动力可以定义为将一单位的电由一点搬到他点时为了反抗这个电力所作的功。
欧姆关于电的研究是以傅立叶关于热传导的研究(1800-1814年)为根据的。傅立叶假设热流量与温度的梯度成正比,然后用数学方法建立了热传导的定律。欧姆用电位代替温度,用电代替热,并且用实验证明这些观念的有用。他发现:如电流由伏特电池组或塞贝克温差电偶流出,通过一根均匀的导线,其电位的降落率是一个常数。欧姆定律一般写作:电流c与电动力E成比例,
c=kE=E/R,
式内k是一个常数,可名为传导率,而其倒数1/k或R,称为电阻。R只随导体的性质、温度与大小而异,它与导体的长度成正比,而与其横剖面的面积成反比。这后一事实表明电流是在导体的全部质量中均匀地通过。后来发现,在很高远的交流电的情形下,还须加一些修改。
经安培与欧姆的努力之后,电流的问题已经到了新物理学的重要阶段,因为适当的基本量已经选出,并有了确定的意义,因而给数学上的发展奠定了坚固的基础。
光的波动说
十九世纪初年,还有另外一个古老的观念复活起来和确立起来,这便是光的波动说。我们说过:光的波动说在十七世纪只有胡克等人模糊主张过,后来惠更斯才给予它一个比较确定的形式。牛顿根据两个理由加以挥斥。第一,它不能解释物影,因为牛顿以为如果光是波动的话,光波也如声波那样,会绕过阻碍之物。第二,冰洲石的双折射现象说明光线在不同的边上有不同的性质,而在传播方向上颤动的光波不能有这样的差异。托马斯·杨(ThomasYoung,1773-1829年)与弗雷内尔(Augustin
Jean
Fresnel,1788-1827年)对这个学说赋予近代形式,而克服了这两个困难。不过有一件事是值得回忆的:牛顿以为薄膜的颜色说明光线里的微粒使以太中产生附从波。这个学说与现今用来解释电子性质的理论,惊人地相似。
杨使一束极狭窄的白光通过屏上的两个针孔,再把一个屏放在第一个屏后面。当穿过两个针孔的光线在第二屏上互相重叠时,就有一串颜色鲜亮的光带出现。这些光带是由于从两个针孔光源而来的同类光波互相干涉而形成的。如果一个光波到达第二屏所走的路程和另一光波的路程的相差数恰为波长的一半,则这一光波的峰与另一光波的谷就恰好相遇,结果就产生黑暗。如果两个光波前进的路程恰恰相等,两者的波峰就恰好相遇,光亮也就加倍。我们实际所看见的光是由白光除掉一个波长的光所留下的多色光。如果我们不用多色混成的白光,而用单色光作实验,则所得的将是明暗相间而非彩色的光带。
由所用的仪器的尺寸以及光带的宽度,我们可以计算出各种单色光的波长。这些波长经证明是非常之短,其数量级为一时的五万分之一,或一毫米的二千分之一,和牛顿认为易反射和易透射的间歇长度恰相符合。由此可见,在光线的路径中,一般障碍物的大小比光波的长度大得很多,而且数学上的研究证明,如果我们假定一个前进的波阵面分解为无数同心圈,都环绕着与人目最接近的波阵面上的一点,那么,除了挨近那一点的同心圈之外,其余的同心圈必因干涉而相消,因而我们眼睛所看见的只有沿着直线而来的光。这样,光差不多只沿直线进行,遇着障碍物而弯曲的现象只限于微小的衍射效应。
牛顿的第二困难为弗雷内尔所克服。胡克偶尔提到光波的颤动,可能与光线的方向相正交,弗雷内尔指出这个提示说明一线光在各方向上可能有不同的性质。如果我们看看一个前进光的波阵面,它的线性颤动非上下的即左右的。这样的线颤动应产生所谓平面偏振光。如果一块晶体在一位置上只能让一个方向的颤动通过,第二块同样的晶体沿着晶轴旋转90度之后,必将通过第一晶体而来的光完全遮断。这正是光线通过冰晶石的现象。
弗雷内尔利用数学将光的波动说发展到很圆满的境界。虽然还有一些困难,但大体说来,他的完善的学说与观测到的事实异常符合。他和他以后的人如格林、麦克卡拉(MacCullagh)柯西(Cauchy)、斯托克斯(Stokes)、格莱兹布鲁克(Glazebrook)等人经历一个世纪,才把古典的光的波动说确立起来。