而且,如果你是从1开始的,并且这样下去没有遗漏,你念过的那些数目的那一个数目是你念过的最后的那个数目。这个办法你不能用于无限的集体,因为人生是不够长的。但是,因为数数目再也不重要了,你也就用不着关心了。
既已把整数象以上作了界说,就没有困难引伸其义以应数学的需要。有理分数是来自乘法的整数之间的比数。实数是一组一组的有理数,这些有理数是由零以上一直到某点所有的东西而成。举例来说,二的平方根是所有平方少于二的那些有理数。我相信我是这个定义的发明者。它解决了一个谜,对于这个谜,自从毕达哥拉斯那个时代以来所有的数学家都没有办法。复素数可以看成是成双的实数,所取“双”的意义是,其中有一个第一项和一个第二项,也就是说,其中项的次序是很重要的。
除了我所提到的事项以外,在皮亚诺和他的门徒的工作中还有一些东西使我喜欢。我喜欢他们不用图形发展几何学的方法,这样就表示康德的直观是用不着的。我也喜欢皮亚诺的曲线,这个曲线普及于一整个范围。在我遇到皮亚诺以前,我已经充分知道关系的重要性。所以我立刻就着手用符号处置关系逻辑,以补充皮亚诺所做的工作。我是在七月之末遇见他的。在九月里我写了一篇文章讨论关系的逻辑,发表在他的学报里。我把同一年的十月、十一月和十二月用于撰写《数学的原理》。现在那本书的第三、第四、第五和第六部分和我在那几个月所写的几乎完全是一样的。可是,第一、第二和第七部分我后来又重新写过。我在十九世纪的最后一天,也就是一九○○年的十二月三十一日,写完《数学的原理》的初稿。那年六月以后的几个月是我智力活动的蜜月,无论在此以前或在此以后,我都不曾尝到过。每天我都发现我懂得了一些前一天不曾懂得的东西。我以为一切困难都解决了,一切问题都结束了。但是这个蜜月没有能持久。第二年的年初,智力活动上的悲哀充分地降到了我的头上。
《数学原理》
哲学方面
自一九○○直到一九一○这些年,怀特海和我把我们大部分的时间都用于后来所成的《数学原理》。虽然这部着作的第三卷到一九一三年才出版,我们在这部书里的任务(除去校对)是在一九一○年完成的,我们在那一年把全部稿子交给了剑桥大学出版社。我在一九○二年五月二十三日写完的《数学的原理》结果变成了其后那部着作的一个粗糙、很不成熟的草稿。可是,《数学的原理》和《数学原理》不同之点是,《数学的原理》是包含着和别的一些数学哲理的争论。
我们所想解决的问题有两种:哲学的与数学的。大致说来,怀特海把哲学问题留给我。至于数学问题,记号法大部分是怀特海创制的,(引用皮亚诺者除外)。关于级数大部分的工作是我做的,其余是怀特海做的。但是这只是指初稿。每一部分都是弄过三次。我们两个人不管是谁拟出一个初稿的时候,他就把这个初稿送交另一个人,这一个人通常是把它大加修改。然后,原来拟初稿的人再把它最后定稿。这三卷书几乎没有一行不是合作的成品。