Further,whyshouldtherealwaysbebecoming,andwhatisthe
causeofbecoming?-thisnoonetellsus。Andthosewhosupposetwo
principlesmustsupposeanother,asuperiorprinciple,andsomust
thosewhobelieveintheForms;forwhydidthingscometo
participate,orwhydotheyparticipate,intheForms?Andallother
thinkersareconfrontedbythenecessaryconsequencethatthereis
somethingcontrarytoWisdom,i。e。tothehighestknowledge;butwe
arenot。Forthereisnothingcontrarytothatwhichisprimary;for
allcontrarieshavematter,andthingsthathavematterexistonly
potentially;andtheignorancewhichiscontrarytoanyknowledge
leadstoanobjectcontrarytotheobjectoftheknowledge;butwhat
isprimaryhasnocontrary。
Again,ifbesidessensiblethingsnoothersexist,therewillbe
nofirstprinciple,noorder,nobecoming,noheavenlybodies,but
eachprinciplewillhaveaprinciplebeforeit,asintheaccounts
ofthetheologiansandallthenaturalphilosophers。Butifthe
Formsorthenumbersaretoexist,theywillbecausesofnothing;
orifnotthat,atleastnotofmovement。Further,howisextension,
i。e。acontinuum,tobeproducedoutofunextendedparts?Fornumber
willnot,eitherasmoverorasform,produceacontinuum。Butagain
therecannotbeanycontrarythatisalsoessentiallyaproductive
ormovingprinciple;foritwouldbepossibleforitnottobe。Or
atleastitsactionwouldbeposteriortoitspotency。Theworld,
then,wouldnotbeeternal。Butitis;oneofthesepremisses,then,
mustbedenied。Andwehavesaidhowthismustbedone。Further,in
virtueofwhatthenumbers,orthesoulandthebody,oringeneral
theformandthething,areone-ofthisnoonetellsusanything;
norcananyonetell,unlesshesays,aswedo,thatthemovermakes
themone。Andthosewhosaymathematicalnumberisfirstandgoon
togenerateonekindofsubstanceafteranotherandgivedifferent
principlesforeach,makethesubstanceoftheuniverseamere
seriesofepisodesforonesubstancehasnoinfluenceonanotherby
itsexistenceornonexistence,andtheygiveusmanygoverning
principles;buttheworldrefusestobegovernedbadly。
’Theruleofmanyisnotgood;onerulerlettherebe。’
WEhavestatedwhatisthesubstanceofsensiblethings,dealing
inthetreatiseonphysicswithmatter,andlaterwiththesubstance
whichhasactualexistence。Nowsinceourinquiryiswhetherthere
isorisnotbesidesthesensiblesubstancesanywhichisimmovable
andeternal,and,ifthereis,whatitis,wemustfirstconsiderwhat
issaidbyothers,sothat,ifthereisanythingwhichtheysay
wrongly,wemaynotbeliabletothesameobjections,while,if
thereisanyopinioncommontothemandus,weshallhavenoprivate
grievanceagainstourselvesonthataccount;foronemustbecontent
tostatesomepointsbetterthanone’spredecessors,andothersno
worse。
Twoopinionsareheldonthissubject;itissaidthattheobjects
ofmathematics-i。e。numbersandlinesandthelike-aresubstances,and
againthattheIdeasaresubstances。And1sincesomerecognize
theseastwodifferentclasses-theIdeasandthemathematicalnumbers,
and2somerecognizebothashavingonenature,while3some
otherssaythatthemathematicalsubstancesaretheonlysubstances,
wemustconsiderfirsttheobjectsofmathematics,notqualifyingthem
byanyothercharacteristic-notasking,forinstance,whethertheyare
infactIdeasornot,orwhethertheyaretheprinciplesand
substancesofexistingthingsornot,butonlywhetherasobjectsof
mathematicstheyexistornot,andiftheyexist,howtheyexist。Then
afterthiswemustseparatelyconsidertheIdeasthemselvesina
generalway,andonlyasfarastheacceptedmodeoftreatment
demands;formostofthepointshavebeenrepeatedlymadeevenby
thediscussionsoutsideourschool,and,further,thegreaterpart
ofouraccountmustfinishbythrowinglightonthatinquiry,viz。
whenweexaminewhetherthesubstancesandtheprinciplesof
existingthingsarenumbersandIdeas;forafterthediscussionofthe
Ideasthisremansasathirdinquiry。
Iftheobjectsofmathematicsexist,theymustexisteitherin
sensibleobjects,assomesay,orseparatefromsensibleobjects
andthisalsoissaidbysome;oriftheyexistinneitherof
theseways,eithertheydonotexist,ortheyexistonlyinsome
specialsense。Sothatthesubjectofourdiscussionwillbenot
whethertheyexistbuthowtheyexist。
Thatitisimpossibleformathematicalobjectstoexistin
sensiblethings,andatthesametimethatthedoctrineinquestionis
anartificialone,hasbeensaidalreadyinourdiscussionof
difficultieswehavepointedoutthatitisimpossiblefortwo
solidstobeinthesameplace,andalsothataccordingtothesame
argumenttheotherpowersandcharacteristicsalsoshouldexistin
sensiblethingsandnoneofthemseparately。Thiswehavesaid
already。But,further,itisobviousthatonthistheoryitis
impossibleforanybodywhatevertobedivided;foritwouldhaveto
bedividedataplane,andtheplaneataline,andthelineata
point,sothatifthepointcannotbedivided,neithercantheline,
andifthelinecannot,neithercantheplanenorthesolid。What
difference,then,doesitmakewhethersensiblethingsaresuch
indivisibleentities,or,withoutbeingsothemselves,have
indivisibleentitiesinthem?Theresultwillbethesame;ifthe
sensibleentitiesaredividedtheotherswillbedividedtoo,or
elsenoteventhesensibleentitiescanbedivided。
But,again,itisnotpossiblethatsuchentitiesshouldexist
separately。Forifbesidesthesensiblesolidstherearetobeother
solidswhichareseparatefromthemandpriortothesensible
solids,itisplainthatbesidestheplanesalsotheremustbeother
andseparateplanesandpointsandlines;forconsistencyrequires
this。Butiftheseexist,againbesidestheplanesandlinesand
pointsofthemathematicalsolidtheremustbeotherswhichare
separate。Forincompositesarepriortocompounds;andifthere
are,priortothesensiblebodies,bodieswhicharenotsensible,by
thesameargumenttheplaneswhichexistbythemselvesmustbeprior
tothosewhichareinthemotionlesssolids。Thereforethesewillbe
planesandlinesotherthanthosethatexistalongwiththe
mathematicalsolidstowhichthesethinkersassignseparateexistence;
forthelatterexistalongwiththemathematicalsolids,whilethe
othersarepriortothemathematicalsolids。Again,therefore,
therewillbe,belongingtotheseplanes,lines,andpriortothem
therewillhavetobe,bythesameargument,otherlinesandpoints;
andpriortothesepointsinthepriorlinestherewillhavetobe
otherpoints,thoughtherewillbenootherspriortothese。Now1
theaccumulationbecomesabsurd;forwefindourselveswithonesetof
solidsapartfromthesensiblesolids;threesetsofplanesapartfrom
thesensibleplanes-thosewhichexistapartfromthesensible
planes,andthoseinthemathematicalsolids,andthosewhichexist
apartfromthoseinthemathematicalsolids;foursetsoflines,and
fivesetsofpoints。Withwhichofthese,then,willthe
mathematicalsciencesdeal?Certainlynotwiththeplanesandlines
andpointsinthemotionlesssolid;forsciencealwaysdealswithwhat
isprior。Andthesameaccountwillapplyalsotonumbers;for
therewillbeadifferentsetofunitsapartfromeachsetof
points,andalsoapartfromeachsetofrealities,fromtheobjectsof
senseandagainfromthoseofthought;sothattherewillbevarious
classesofmathematicalnumbers。
Again,howisitpossibletosolvethequestionswhichwehave
alreadyenumeratedinourdiscussionofdifficulties?Forthe
objectsofastronomywillexistapartfromsensiblethingsjustasthe
objectsofgeometrywill;buthowisitpossiblethataheavenandits
parts-oranythingelsewhichhasmovement-shouldexistapart?
Similarlyalsotheobjectsofopticsandofharmonicswillexist
apart;fortherewillbebothvoiceandsightbesidesthesensible
orindividualvoicesandsights。Thereforeitisplainthatthe
othersensesaswell,andtheotherobjectsofsense,willexist
apart;forwhyshouldonesetofthemdosoandanothernot?Andif
thisisso,therewillalsobeanimalsexistingapart,sincethere
willbesenses。
Again,therearecertainmathematicaltheoremsthatareuniversal,
extendingbeyondthesesubstances。Herethenweshallhaveanother
intermediatesubstanceseparatebothfromtheIdeasandfromthe
intermediates,-asubstancewhichisneithernumbernorpointsnor
spatialmagnitudenortime。Andifthisisimpossible,plainlyitis
alsoimpossiblethattheformerentitiesshouldexistseparatefrom
sensiblethings。
And,ingeneral,conclusioncontraryaliketothetruthandtothe
usualviewsfollow,ifoneistosupposetheobjectsofmathematicsto
existthusasseparateentities。Forbecausetheyexistthustheymust
bepriortosensiblespatialmagnitudes,butintruththeymustbe
posterior;fortheincompletespatialmagnitudeisintheorderof
generationprior,butintheorderofsubstanceposterior,asthe
lifelessistotheliving。
Again,byvirtueofwhat,andwhen,willmathematicalmagnitudes
beone?Forthingsinourperceptibleworldareoneinvirtueofsoul,
orofapartofsoul,orofsomethingelsethatisreasonable
enough;whenthesearenotpresent,thethingisaplurality,and
splitsupintoparts。Butinthecaseofthesubjectsof
mathematics,whicharedivisibleandarequantities,whatisthecause
oftheirbeingoneandholdingtogether?
Again,themodesofgenerationoftheobjectsofmathematics
showthatweareright。Forthedimensionfirstgeneratedislength,
thencomesbreadth,lastlydepth,andtheprocessiscomplete。If,
then,thatwhichisposteriorintheorderofgenerationispriorin
theorderofsubstantiality,thesolidwillbepriortotheplane
andtheline。Andinthiswayalsoitisbothmorecompleteandmore
whole,becauseitcanbecomeanimate。How,ontheotherhand,could
alineoraplanebeanimate?Thesuppositionpassesthepowerof
oursenses。
Again,thesolidisasortofsubstance;foritalreadyhasina
sensecompleteness。Buthowcanlinesbesubstances?Neitherasaform
orshape,asthesoulperhapsis,norasmatter,likethesolid;for
wehavenoexperienceofanythingthatcanbeputtogetheroutof
linesorplanesorpoints,whileifthesehadbeenasortof
materialsubstance,weshouldhaveobservedthingswhichcouldbe
puttogetheroutofthem。
Grant,then,thattheyarepriorindefinition。Stillnotall
thingsthatarepriorindefinitionarealsopriorin
substantiality。Forthosethingsarepriorinsubstantialitywhich
whenseparatedfromotherthingssurpasstheminthepowerof
independentexistence,butthingsarepriorindefinitiontothose
whosedefinitionsarecompoundedoutoftheirdefinitions;andthese
twopropertiesarenotcoextensive。Forifattributesdonotexist
apartfromthesubstancese。g。a’mobile’orapale’,paleis
priortothepalemanindefinition,butnotinsubstantiality。Forit
cannotexistseparately,butisalwaysalongwiththeconcrete
thing;andbytheconcretethingImeanthepaleman。Thereforeit
isplainthatneitheristheresultofabstractionpriornorthat
whichisproducedbyaddingdeterminantsposterior;foritisby
addingadeterminanttopalethatwespeakofthepaleman。
Ithas,then,beensufficientlypointedoutthattheobjectsof
mathematicsarenotsubstancesinahigherdegreethanbodiesare,and
thattheyarenotpriortosensiblesinbeing,butonlyindefinition,
andthattheycannotexistsomewhereapart。Butsinceitwasnot
possibleforthemtoexistinsensibleseither,itisplainthat
theyeitherdonotexistatallorexistinaspecialsenseand
thereforedonot’exist’withoutqualification。For’exist’hasmany
senses。