Forjustastheuniversalpropositionsofmathematicsdealnot
  withobjectswhichexistseparately,apartfromextendedmagnitudes
  andfromnumbers,butwithmagnitudesandnumbers,nothoweverqua
  suchastohavemagnitudeortobedivisible,clearlyitispossible
  thatthereshouldalsobebothpropositionsanddemonstrationsabout
  sensiblemagnitudes,nothoweverquasensiblebutquapossessedof
  certaindefinitequalities。Forastherearemanypropositionsabout
  thingsmerelyconsideredasinmotion,apartfromwhateachsuchthing
  isandfromtheiraccidents,andasitisnotthereforenecessarythat
  thereshouldbeeitheramobileseparatefromsensibles,oradistinct
  mobileentityinthesensibles,sotoointhecaseofmobilesthere
  willbepropositionsandsciences,whichtreatthemhowevernotqua
  mobilebutonlyquabodies,oragainonlyquaplanes,oronlyqua
  lines,orquadivisibles,orquaindivisibleshavingposition,oronly
  quaindivisibles。Thussinceitistruetosaywithoutqualification
  thatnotonlythingswhichareseparablebutalsothingswhichare
  inseparableexistforinstance,thatmobilesexist,itistrue
  alsotosaywithoutqualificationthattheobjectsofmathematics
  exist,andwiththecharacterascribedtothembymathematicians。
  Andasitistruetosayoftheothersciencestoo,without
  qualification,thattheydealwithsuchandsuchasubject-notwith
  whatisaccidentaltoite。g。notwiththepale,ifthehealthything
  ispale,andthesciencehasthehealthyasitssubject,butwith
  thatwhichisthesubjectofeachscience-withthehealthyifit
  treatsitsobjectquahealthy,withmanifquaman:-sotooisit
  withgeometry;ifitssubjectshappentobesensible,thoughitdoes
  nottreatthemquasensible,themathematicalscienceswillnotfor
  thatreasonbesciencesofsensibles-nor,ontheotherhand,of
  otherthingsseparatefromsensibles。Manypropertiesattachtothings
  invirtueoftheirownnatureaspossessedofeachsuchcharacter;
  e。g。thereareattributespeculiartotheanimalquafemaleorqua
  maleyetthereisno’female’nor’male’separatefromanimals;so
  thattherearealsoattributeswhichbelongtothingsmerelyas
  lengthsorasplanes。Andinproportionaswearedealingwith
  thingswhicharepriorindefinitionandsimpler,ourknowledgehas
  moreaccuracy,i。e。simplicity。Thereforeasciencewhichabstracts
  fromspatialmagnitudeismoreprecisethanonewhichtakesitinto
  account;andascienceismostpreciseifitabstractsfrom
  movement,butifittakesaccountofmovement,itismostpreciseif
  itdealswiththeprimarymovement,forthisisthesimplest;andof
  thisagainuniformmovementisthesimplestform。
  Thesameaccountmaybegivenofharmonicsandoptics;forneither
  considersitsobjectsquasightorquavoice,butqualinesand
  numbers;butthelatterareattributespropertotheformer。And
  mechanicstooproceedsinthesameway。Thereforeifwesuppose
  attributesseparatedfromtheirfellowattributesandmakeanyinquiry
  concerningthemassuch,weshallnotforthisreasonbeinerror,any
  morethanwhenonedrawsalineonthegroundandcallsitafootlong
  whenitisnot;fortheerrorisnotincludedinthepremisses。
  Eachquestionwillbebestinvestigatedinthisway-bysetting
  upbyanactofseparationwhatisnotseparate,asthe
  arithmeticianandthegeometerdo。Foramanquamanisone
  indivisiblething;andthearithmeticiansupposedoneindivisible
  thing,andthenconsideredwhetheranyattributebelongstoaman
  quaindivisible。Butthegeometertreatshimneitherquamannorqua
  indivisible,butasasolid。Forevidentlythepropertieswhich
  wouldhavebelongedtohimevenifperchancehehadnotbeen
  indivisible,canbelongtohimevenapartfromtheseattributes。Thus,
  then,geometersspeakcorrectly;theytalkaboutexistingthings,
  andtheirsubjectsdoexist;forbeinghastwoforms-itexistsnot
  onlyincompleterealitybutalsomaterially。
  Nowsincethegoodandthebeautifularedifferentfortheformer
  alwaysimpliesconductasitssubject,whilethebeautifulisfound
  alsoinmotionlessthings,thosewhoassertthatthemathematical
  sciencessaynothingofthebeautifulorthegoodareinerror。For
  thesesciencessayandproveagreatdealaboutthem;iftheydonot
  expresslymentionthem,butproveattributeswhicharetheirresults
  ortheirdefinitions,itisnottruetosaythattheytellus
  nothingaboutthem。Thechiefformsofbeautyareorderandsymmetry
  anddefiniteness,whichthemathematicalsciencesdemonstrateina
  specialdegree。Andsincethesee。g。orderanddefinitenessare
  obviouslycausesofmanythings,evidentlythesesciencesmusttreat
  thissortofcausativeprinciplealsoi。e。thebeautifulasin
  somesenseacause。Butweshallspeakmoreplainlyelsewhereabout
  thesematters。
  Somuchthenfortheobjectsofmathematics;wehavesaidthat
  theyexistandinwhatsensetheyexist,andinwhatsensetheyare
  priorandinwhatsensenotprior。Now,regardingtheIdeas,wemust
  firstexaminetheidealtheoryitself,notconnectingitinanyway
  withthenatureofnumbers,buttreatingitintheforminwhichit
  wasoriginallyunderstoodbythosewhofirstmaintainedthe
  existenceoftheIdeas。Thesupportersoftheidealtheorywereledto
  itbecauseonthequestionaboutthetruthofthingstheyacceptedthe
  Heracliteansayingswhichdescribeallsensiblethingsaseverpassing
  away,sothatifknowledgeorthoughtistohaveanobject,theremust
  besomeotherandpermanententities,apartfromthosewhichare
  sensible;fortherecouldbenoknowledgeofthingswhichwereina
  stateofflux。ButwhenSocrateswasoccupyinghimselfwiththe
  excellencesofcharacter,andinconnexionwiththembecamethe
  firsttoraisetheproblemofuniversaldefinitionforofthe
  physicistsDemocritusonlytouchedonthesubjecttoasmallextent,
  anddefined,afterafashion,thehotandthecold;whilethe
  Pythagoreanshadbeforethistreatedofafewthings,whose
  definitions-e。g。thoseofopportunity,justice,ormarriage-they
  connectedwithnumbers;butitwasnaturalthatSocratesshouldbe
  seekingtheessence,forhewasseekingtosyllogize,and’whata
  thingis’isthestarting-pointofsyllogisms;fortherewasasyet
  noneofthedialecticalpowerwhichenablespeopleevenwithout
  knowledgeoftheessencetospeculateaboutcontrariesandinquire
  whetherthesamesciencedealswithcontraries;fortwothingsmay
  befairlyascribedtoSocrates-inductiveargumentsanduniversal
  definition,bothofwhichareconcernedwiththestarting-pointof
  science:-butSocratesdidnotmaketheuniversalsorthe
  definitionsexistapart:they,however,gavethemseparate
  existence,andthiswasthekindofthingtheycalledIdeas。Therefore
  itfollowedforthem,almostbythesameargument,thattheremust
  beIdeasofallthingsthatarespokenofuniversally,anditwas
  almostasifamanwishedtocountcertainthings,andwhiletheywere
  fewthoughthewouldnotbeabletocountthem,butmademoreof
  themandthencountedthem;fortheFormsare,onemaysay,more
  numerousthantheparticularsensiblethings,yetitwasinseeking
  thecausesofthesethattheyproceededfromthemtotheForms。Forto
  eachthingthereanswersanentitywhichhasthesamenameand
  existsapartfromthesubstances,andsoalsointhecaseofallother
  groupsthereisaoneovermany,whetherthesebeofthisworldor
  eternal。
  Again,ofthewaysinwhichitisprovedthattheFormsexist,
  noneisconvincing;forfromsomenoinferencenecessarilyfollows,
  andfromsomeariseFormsevenofthingsofwhichtheythinkthereare
  noForms。Foraccordingtotheargumentsfromthesciencesthere
  willbeFormsofallthingsofwhichtherearesciences,andaccording
  totheargumentofthe’oneovermany’therewillbeFormsevenof
  negations,andaccordingtotheargumentthatthoughthasanobject
  whentheindividualobjecthasperished,therewillbeFormsof
  perishablethings;forwehaveanimageofthese。Again,ofthemost
  accuratearguments,someleadtoIdeasofrelations,ofwhichtheysay
  thereisnoindependentclass,andothersintroducethe’thirdman’。
  AndingeneraltheargumentsfortheFormsdestroythingsfor
  whoseexistencethebelieversinFormsaremorezealousthanforthe
  existenceoftheIdeas;foritfollowsthatnotthedyadbutnumberis
  first,andthatpriortonumberistherelative,andthatthisis
  priortotheabsolute-besidesalltheotherpointsonwhichcertain
  people,byfollowingouttheopinionsheldabouttheForms,came
  intoconflictwiththeprinciplesofthetheory。
  Again,accordingtotheassumptiononthebeliefintheIdeas
  rests,therewillbeFormsnotonlyofsubstancesbutalsoofmany
  otherthings;fortheconceptissinglenotonlyinthecaseof
  substances,butalsointhatofnon-substances,andtherearesciences
  ofotherthingsthansubstance;andathousandothersuchdifficulties
  confrontthem。Butaccordingtothenecessitiesofthecaseandthe
  opinionsabouttheForms,iftheycanbesharedintheremustbeIdeas
  ofsubstancesonly。Fortheyarenotsharedinincidentally,but
  eachFormmustbesharedinassomethingnotpredicatedofa
  subject。By’beingsharedinincidentally’Imeanthatifathing
  sharesin’doubleitself’,itsharesalsoin’eternal’,but
  incidentally;for’thedouble’happenstobeeternal。Thereforethe
  Formswillbesubstance。Butthesamenamesindicatesubstanceinthis
  andintheidealworldorwhatwillbethemeaningofsayingthat
  thereissomethingapartfromtheparticulars-theoneovermany?。And
  iftheIdeasandthethingsthatshareinthemhavethesameform,
  therewillbesomethingcommon:forwhyshould’2’beoneandthesame
  intheperishable2’s,orinthe2’swhicharemanybuteternal,and
  notthesameinthe’2itself’asintheindividual2?Butifthey
  havenotthesameform,theywillhaveonlythenameincommon,andit
  isasifoneweretocallbothCalliasandapieceofwooda’man’,
  withoutobservinganycommunitybetweenthem。
  Butifwearetosupposethatinotherrespectsthecommon
  definitionsapplytotheForms,e。g。that’planefigure’andtheother
  partsofthedefinitionapplytothecircleitself,but’whatreally
  is’hastobeadded,wemustinquirewhetherthisisnotabsolutely
  meaningless。Fortowhatisthistobeadded?To’centre’orto
  ’plane’ortoallthepartsofthedefinition?Foralltheelementsin
  theessenceareIdeas,e。g。’animal’and’two-footed’。Further,
  theremustbesomeIdealansweringto’plane’above,somenaturewhich
  willbepresentinalltheFormsastheirgenus。
  Aboveallonemightdiscussthequestionwhatintheworldthe
  Formscontributetosensiblethings,eithertothosethatare
  eternalortothosethatcomeintobeingandceasetobe;forthey
  causeneithermovementnoranychangeinthem。Butagaintheyhelp
  innowiseeithertowardstheknowledgeofotherthingsforthey
  arenoteventhesubstanceofthese,elsetheywouldhavebeenin
  them,ortowardstheirbeing,iftheyarenotintheindividuals
  whichshareinthem;thoughiftheywere,theymightbethoughtto
  becauses,aswhitecauseswhitenessinawhiteobjectbyentering
  intoitscomposition。Butthisargument,whichwasusedfirstby
  Anaxagoras,andlaterbyEudoxusinhisdiscussionofdifficultiesand
  bycertainothers,isveryeasilyupset;foritiseasytocollect
  manyandinsuperableobjectionstosuchaview。