Forjustastheuniversalpropositionsofmathematicsdealnot
withobjectswhichexistseparately,apartfromextendedmagnitudes
andfromnumbers,butwithmagnitudesandnumbers,nothoweverqua
suchastohavemagnitudeortobedivisible,clearlyitispossible
thatthereshouldalsobebothpropositionsanddemonstrationsabout
sensiblemagnitudes,nothoweverquasensiblebutquapossessedof
certaindefinitequalities。Forastherearemanypropositionsabout
thingsmerelyconsideredasinmotion,apartfromwhateachsuchthing
isandfromtheiraccidents,andasitisnotthereforenecessarythat
thereshouldbeeitheramobileseparatefromsensibles,oradistinct
mobileentityinthesensibles,sotoointhecaseofmobilesthere
willbepropositionsandsciences,whichtreatthemhowevernotqua
mobilebutonlyquabodies,oragainonlyquaplanes,oronlyqua
lines,orquadivisibles,orquaindivisibleshavingposition,oronly
quaindivisibles。Thussinceitistruetosaywithoutqualification
thatnotonlythingswhichareseparablebutalsothingswhichare
inseparableexistforinstance,thatmobilesexist,itistrue
alsotosaywithoutqualificationthattheobjectsofmathematics
exist,andwiththecharacterascribedtothembymathematicians。
Andasitistruetosayoftheothersciencestoo,without
qualification,thattheydealwithsuchandsuchasubject-notwith
whatisaccidentaltoite。g。notwiththepale,ifthehealthything
ispale,andthesciencehasthehealthyasitssubject,butwith
thatwhichisthesubjectofeachscience-withthehealthyifit
treatsitsobjectquahealthy,withmanifquaman:-sotooisit
withgeometry;ifitssubjectshappentobesensible,thoughitdoes
nottreatthemquasensible,themathematicalscienceswillnotfor
thatreasonbesciencesofsensibles-nor,ontheotherhand,of
otherthingsseparatefromsensibles。Manypropertiesattachtothings
invirtueoftheirownnatureaspossessedofeachsuchcharacter;
e。g。thereareattributespeculiartotheanimalquafemaleorqua
maleyetthereisno’female’nor’male’separatefromanimals;so
thattherearealsoattributeswhichbelongtothingsmerelyas
lengthsorasplanes。Andinproportionaswearedealingwith
thingswhicharepriorindefinitionandsimpler,ourknowledgehas
moreaccuracy,i。e。simplicity。Thereforeasciencewhichabstracts
fromspatialmagnitudeismoreprecisethanonewhichtakesitinto
account;andascienceismostpreciseifitabstractsfrom
movement,butifittakesaccountofmovement,itismostpreciseif
itdealswiththeprimarymovement,forthisisthesimplest;andof
thisagainuniformmovementisthesimplestform。
Thesameaccountmaybegivenofharmonicsandoptics;forneither
considersitsobjectsquasightorquavoice,butqualinesand
numbers;butthelatterareattributespropertotheformer。And
mechanicstooproceedsinthesameway。Thereforeifwesuppose
attributesseparatedfromtheirfellowattributesandmakeanyinquiry
concerningthemassuch,weshallnotforthisreasonbeinerror,any
morethanwhenonedrawsalineonthegroundandcallsitafootlong
whenitisnot;fortheerrorisnotincludedinthepremisses。
Eachquestionwillbebestinvestigatedinthisway-bysetting
upbyanactofseparationwhatisnotseparate,asthe
arithmeticianandthegeometerdo。Foramanquamanisone
indivisiblething;andthearithmeticiansupposedoneindivisible
thing,andthenconsideredwhetheranyattributebelongstoaman
quaindivisible。Butthegeometertreatshimneitherquamannorqua
indivisible,butasasolid。Forevidentlythepropertieswhich
wouldhavebelongedtohimevenifperchancehehadnotbeen
indivisible,canbelongtohimevenapartfromtheseattributes。Thus,
then,geometersspeakcorrectly;theytalkaboutexistingthings,
andtheirsubjectsdoexist;forbeinghastwoforms-itexistsnot
onlyincompleterealitybutalsomaterially。
Nowsincethegoodandthebeautifularedifferentfortheformer
alwaysimpliesconductasitssubject,whilethebeautifulisfound
alsoinmotionlessthings,thosewhoassertthatthemathematical
sciencessaynothingofthebeautifulorthegoodareinerror。For
thesesciencessayandproveagreatdealaboutthem;iftheydonot
expresslymentionthem,butproveattributeswhicharetheirresults
ortheirdefinitions,itisnottruetosaythattheytellus
nothingaboutthem。Thechiefformsofbeautyareorderandsymmetry
anddefiniteness,whichthemathematicalsciencesdemonstrateina
specialdegree。Andsincethesee。g。orderanddefinitenessare
obviouslycausesofmanythings,evidentlythesesciencesmusttreat
thissortofcausativeprinciplealsoi。e。thebeautifulasin
somesenseacause。Butweshallspeakmoreplainlyelsewhereabout
thesematters。
Somuchthenfortheobjectsofmathematics;wehavesaidthat
theyexistandinwhatsensetheyexist,andinwhatsensetheyare
priorandinwhatsensenotprior。Now,regardingtheIdeas,wemust
firstexaminetheidealtheoryitself,notconnectingitinanyway
withthenatureofnumbers,buttreatingitintheforminwhichit
wasoriginallyunderstoodbythosewhofirstmaintainedthe
existenceoftheIdeas。Thesupportersoftheidealtheorywereledto
itbecauseonthequestionaboutthetruthofthingstheyacceptedthe
Heracliteansayingswhichdescribeallsensiblethingsaseverpassing
away,sothatifknowledgeorthoughtistohaveanobject,theremust
besomeotherandpermanententities,apartfromthosewhichare
sensible;fortherecouldbenoknowledgeofthingswhichwereina
stateofflux。ButwhenSocrateswasoccupyinghimselfwiththe
excellencesofcharacter,andinconnexionwiththembecamethe
firsttoraisetheproblemofuniversaldefinitionforofthe
physicistsDemocritusonlytouchedonthesubjecttoasmallextent,
anddefined,afterafashion,thehotandthecold;whilethe
Pythagoreanshadbeforethistreatedofafewthings,whose
definitions-e。g。thoseofopportunity,justice,ormarriage-they
connectedwithnumbers;butitwasnaturalthatSocratesshouldbe
seekingtheessence,forhewasseekingtosyllogize,and’whata
thingis’isthestarting-pointofsyllogisms;fortherewasasyet
noneofthedialecticalpowerwhichenablespeopleevenwithout
knowledgeoftheessencetospeculateaboutcontrariesandinquire
whetherthesamesciencedealswithcontraries;fortwothingsmay
befairlyascribedtoSocrates-inductiveargumentsanduniversal
definition,bothofwhichareconcernedwiththestarting-pointof
science:-butSocratesdidnotmaketheuniversalsorthe
definitionsexistapart:they,however,gavethemseparate
existence,andthiswasthekindofthingtheycalledIdeas。Therefore
itfollowedforthem,almostbythesameargument,thattheremust
beIdeasofallthingsthatarespokenofuniversally,anditwas
almostasifamanwishedtocountcertainthings,andwhiletheywere
fewthoughthewouldnotbeabletocountthem,butmademoreof
themandthencountedthem;fortheFormsare,onemaysay,more
numerousthantheparticularsensiblethings,yetitwasinseeking
thecausesofthesethattheyproceededfromthemtotheForms。Forto
eachthingthereanswersanentitywhichhasthesamenameand
existsapartfromthesubstances,andsoalsointhecaseofallother
groupsthereisaoneovermany,whetherthesebeofthisworldor
eternal。
Again,ofthewaysinwhichitisprovedthattheFormsexist,
noneisconvincing;forfromsomenoinferencenecessarilyfollows,
andfromsomeariseFormsevenofthingsofwhichtheythinkthereare
noForms。Foraccordingtotheargumentsfromthesciencesthere
willbeFormsofallthingsofwhichtherearesciences,andaccording
totheargumentofthe’oneovermany’therewillbeFormsevenof
negations,andaccordingtotheargumentthatthoughthasanobject
whentheindividualobjecthasperished,therewillbeFormsof
perishablethings;forwehaveanimageofthese。Again,ofthemost
accuratearguments,someleadtoIdeasofrelations,ofwhichtheysay
thereisnoindependentclass,andothersintroducethe’thirdman’。
AndingeneraltheargumentsfortheFormsdestroythingsfor
whoseexistencethebelieversinFormsaremorezealousthanforthe
existenceoftheIdeas;foritfollowsthatnotthedyadbutnumberis
first,andthatpriortonumberistherelative,andthatthisis
priortotheabsolute-besidesalltheotherpointsonwhichcertain
people,byfollowingouttheopinionsheldabouttheForms,came
intoconflictwiththeprinciplesofthetheory。
Again,accordingtotheassumptiononthebeliefintheIdeas
rests,therewillbeFormsnotonlyofsubstancesbutalsoofmany
otherthings;fortheconceptissinglenotonlyinthecaseof
substances,butalsointhatofnon-substances,andtherearesciences
ofotherthingsthansubstance;andathousandothersuchdifficulties
confrontthem。Butaccordingtothenecessitiesofthecaseandthe
opinionsabouttheForms,iftheycanbesharedintheremustbeIdeas
ofsubstancesonly。Fortheyarenotsharedinincidentally,but
eachFormmustbesharedinassomethingnotpredicatedofa
subject。By’beingsharedinincidentally’Imeanthatifathing
sharesin’doubleitself’,itsharesalsoin’eternal’,but
incidentally;for’thedouble’happenstobeeternal。Thereforethe
Formswillbesubstance。Butthesamenamesindicatesubstanceinthis
andintheidealworldorwhatwillbethemeaningofsayingthat
thereissomethingapartfromtheparticulars-theoneovermany?。And
iftheIdeasandthethingsthatshareinthemhavethesameform,
therewillbesomethingcommon:forwhyshould’2’beoneandthesame
intheperishable2’s,orinthe2’swhicharemanybuteternal,and
notthesameinthe’2itself’asintheindividual2?Butifthey
havenotthesameform,theywillhaveonlythenameincommon,andit
isasifoneweretocallbothCalliasandapieceofwooda’man’,
withoutobservinganycommunitybetweenthem。
Butifwearetosupposethatinotherrespectsthecommon
definitionsapplytotheForms,e。g。that’planefigure’andtheother
partsofthedefinitionapplytothecircleitself,but’whatreally
is’hastobeadded,wemustinquirewhetherthisisnotabsolutely
meaningless。Fortowhatisthistobeadded?To’centre’orto
’plane’ortoallthepartsofthedefinition?Foralltheelementsin
theessenceareIdeas,e。g。’animal’and’two-footed’。Further,
theremustbesomeIdealansweringto’plane’above,somenaturewhich
willbepresentinalltheFormsastheirgenus。
Aboveallonemightdiscussthequestionwhatintheworldthe
Formscontributetosensiblethings,eithertothosethatare
eternalortothosethatcomeintobeingandceasetobe;forthey
causeneithermovementnoranychangeinthem。Butagaintheyhelp
innowiseeithertowardstheknowledgeofotherthingsforthey
arenoteventhesubstanceofthese,elsetheywouldhavebeenin
them,ortowardstheirbeing,iftheyarenotintheindividuals
whichshareinthem;thoughiftheywere,theymightbethoughtto
becauses,aswhitecauseswhitenessinawhiteobjectbyentering
intoitscomposition。Butthisargument,whichwasusedfirstby
Anaxagoras,andlaterbyEudoxusinhisdiscussionofdifficultiesand
bycertainothers,isveryeasilyupset;foritiseasytocollect
manyandinsuperableobjectionstosuchaview。