But,further,allotherthingscannotcomefromtheFormsinany
  oftheusualsensesof’from’。Andtosaythattheyarepatternsand
  theotherthingsshareinthemistouseemptywordsandpoetical
  metaphors。Forwhatisitthatworks,lookingtotheIdeas?Andany
  thingcanbothbeandcomeintobeingwithoutbeingcopiedfrom
  somethingelse,sothat,whetherSocratesexistsornot,amanlike
  Socratesmightcometobe。Andevidentlythismightbesoevenif
  Socrateswereeternal。Andtherewillbeseveralpatternsofthe
  samething,andthereforeseveralForms;e。g。’animal’and
  ’two-footed’,andalso’man-himself’,willbeFormsofman。Again,the
  Formsarepatternsnotonlyofsensiblethings,butofForms
  themselvesalso;i。e。thegenusisthepatternofthevarious
  forms-of-a-genus;thereforethesamethingwillbepatternandcopy。
  Again,itwouldseemimpossiblethatsubstanceandthatwhose
  substanceitisshouldexistapart;how,therefore,couldtheIdeas,
  beingthesubstancesofthings,existapart?
  InthePhaedothecaseisstatedinthisway-thattheFormsare
  causesbothofbeingandofbecoming。YetthoughtheFormsexist,
  stillthingsdonotcomeintobeing,unlessthereissomethingto
  originatemovement;andmanyotherthingscomeintobeinge。g。a
  houseoraringofwhichtheysaytherearenoForms。Clearly
  thereforeeventhethingsofwhichtheysaythereareIdeascanboth
  beandcomeintobeingowingtosuchcausesasproducethethingsjust
  mentioned,andnotowingtotheForms。ButregardingtheIdeasitis
  possible,bothinthiswayandbymoreabstractandaccurate
  arguments,tocollectmanyobjectionslikethosewehaveconsidered。
  Sincewehavediscussedthesepoints,itiswelltoconsideragain
  theresultsregardingnumberswhichconfrontthosewhosaythat
  numbersareseparablesubstancesandfirstcausesofthings。Ifnumber
  isanentityanditssubstanceisnothingotherthanjustnumber,as
  somesay,itfollowsthateither1thereisafirstinitanda
  second,eachbeingdifferentinspecies,-andeitherathisistrue
  oftheunitswithoutexception,andanyunitisinassociablewith
  anyunit,orbtheyareallwithoutexceptionsuccessive,andanyof
  themareassociablewithany,astheysayisthecasewith
  mathematicalnumber;forinmathematicalnumbernooneunitisin
  anywaydifferentfromanother。Orcsomeunitsmustbeassociable
  andsomenot;e。g。supposethat2isfirstafter1,andthencomes3
  andthentherestofthenumberseries,andtheunitsineachnumber
  areassociable,e。g。thoseinthefirst2areassociablewithone
  another,andthoseinthefirst3withoneanother,andsowiththe
  othernumbers;buttheunitsinthe’2-itself’areinassociablewith
  thoseinthe’3-itself’;andsimilarlyinthecaseoftheother
  successivenumbers。Andsowhilemathematicalnumberiscounted
  thus-after1,2whichconsistsofanother1besidestheformer1,
  and3whichconsistsofanother1besidesthesetwo,andtheother
  numberssimilarly,idealnumberiscountedthus-after1,adistinct
  2whichdoesnotincludethefirst1,anda3whichdoesnotinclude
  the2andtherestofthenumberseriessimilarly。Or2onekind
  ofnumbermustbelikethefirstthatwasnamed,onelikethatwhich
  themathematiciansspeakof,andthatwhichwehavenamedlastmustbe
  athirdkind。
  Again,thesekindsofnumbersmusteitherbeseparablefrom
  things,ornotseparablebutinobjectsofperceptionnothowever
  inthewaywhichwefirstconsidered,inthesensethatobjectsof
  perceptionconsistsofnumberswhicharepresentinthem-eitherone
  kindandnotanother,orallofthem。
  Theseareofnecessitytheonlywaysinwhichthenumberscan
  exist。Andofthosewhosaythatthe1isthebeginningand
  substanceandelementofallthings,andthatnumberisformedfrom
  the1andsomethingelse,almosteveryonehasdescribednumberinone
  oftheseways;onlynoonehassaidalltheunitsareinassociable。
  Andthishashappenedreasonablyenough;fortherecanbenoway
  besidesthosementioned。Somesaybothkindsofnumberexist,that
  whichhasabeforeandafterbeingidenticalwiththeIdeas,and
  mathematicalnumberbeingdifferentfromtheIdeasandfromsensible
  things,andbothbeingseparablefromsensiblethings;andothers
  saymathematicalnumberaloneexists,asthefirstofrealities,
  separatefromsensiblethings。AndthePythagoreans,also,believe
  inonekindofnumber-themathematical;onlytheysayitisnot
  separatebutsensiblesubstancesareformedoutofit。Forthey
  constructthewholeuniverseoutofnumbers-onlynotnumbers
  consistingofabstractunits;theysupposetheunitstohavespatial
  magnitude。Buthowthefirst1wasconstructedsoastohave
  magnitude,theyseemunabletosay。
  Anotherthinkersaysthefirstkindofnumber,thatofthe
  Forms,aloneexists,andsomesaymathematicalnumberisidentical
  withthis。
  Thecaseoflines,planes,andsolidsissimilar。Forsomethink
  thatthosewhicharetheobjectsofmathematicsaredifferentfrom
  thosewhichcomeaftertheIdeas;andofthosewhoexpress
  themselvesotherwisesomespeakoftheobjectsofmathematicsandina
  mathematicalway-viz。thosewhodonotmaketheIdeasnumbersnor
  saythatIdeasexist;andothersspeakoftheobjectsof
  mathematics,butnotmathematically;fortheysaythatneitheris
  everyspatialmagnitudedivisibleintomagnitudes,nordoanytwo
  unitstakenatrandommake2。Allwhosaythe1isanelementand
  principleofthingssupposenumberstoconsistofabstractunits,
  exceptthePythagoreans;buttheysupposethenumberstohave
  magnitude,ashasbeensaidbefore。Itisclearfromthisstatement,
  then,inhowmanywaysnumbersmaybedescribed,andthatalltheways
  havebeenmentioned;andalltheseviewsareimpossible,butsome
  perhapsmorethanothers。
  First,then,letusinquireiftheunitsareassociableor
  inassociable,andifinassociable,inwhichofthetwowayswe
  distinguished。Foritispossiblethatanyunityisinassociable
  withany,anditispossiblethatthoseinthe’itself’are
  inassociablewiththoseinthe’itself’,and,generally,thatthosein
  eachidealnumberareinassociablewiththoseinotherideal
  numbers。Now1allunitsareassociableandwithoutdifference,we
  getmathematicalnumber-onlyonekindofnumber,andtheIdeas
  cannotbethenumbers。Forwhatsortofnumberwillman-himselfor
  animal-itselforanyotherFormbe?ThereisoneIdeaofeachthing
  e。g。oneofman-himselfandanotheroneofanimal-itself;butthe
  similarandundifferentiatednumbersareinfinitelymany,sothat
  anyparticular3isnomoreman-himselfthananyother3。Butifthe
  Ideasarenotnumbers,neithercantheyexistatall。Forfromwhat
  principleswilltheIdeascome?Itisnumberthatcomesfromthe1and
  theindefinitedyad,andtheprinciplesorelementsaresaidtobe
  principlesandelementsofnumber,andtheIdeascannotberankedas
  eitherpriororposteriortothenumbers。
  But2iftheunitsareinassociable,andinassociableinthe
  sensethatanyisinassociablewithanyother,numberofthissort
  cannotbemathematicalnumber;formathematicalnumberconsistsof
  undifferentiatedunits,andthetruthsprovedofitsuitthis
  character。Norcanitbeidealnumber。For2willnotproceed
  immediatelyfrom1andtheindefinitedyad,andbefollowedbythe
  successivenumbers,astheysay’2,3,4’fortheunitsintheidealare
  generatedatthesametime,whether,asthefirstholderofthetheory
  said,fromunequalscomingintobeingwhenthesewereequalizedor
  insomeotherway-since,ifoneunitistobepriortotheother,it
  willbeprioralsoto2thecomposedofthese;forwhenthereisone
  thingpriorandanotherposterior,theresultantofthesewillbe
  priortooneandposteriortotheother。
  Again,sincethe1-itselfis
  first,andthenthereisaparticular1whichisfirstamongthe
  othersandnextafterthe1-itself,andagainathirdwhichisnext
  afterthesecondandnextbutoneafterthefirst1,-sotheunitsmust
  bepriortothenumbersafterwhichtheyarenamedwhenwecountthem;
  e。g。therewillbeathirdunitin2before3exists,andafourthand
  afifthin3beforethenumbers4and5exist-Nownoneofthese
  thinkershassaidtheunitsareinassociableinthisway,but
  accordingtotheirprinciplesitisreasonablethattheyshouldbe
  soeveninthisway,thoughintruthitisimpossible。Foritis
  reasonableboththattheunitsshouldhavepriorityandposteriority
  ifthereisafirstunitorfirst1,andalsothatthe2’sshouldif
  thereisafirst2;forafterthefirstitisreasonableandnecessary
  thatthereshouldbeasecond,andifasecond,athird,andsowith
  theotherssuccessively。Andtosayboththingsatthesametime,
  thataunitisfirstandanotherunitissecondaftertheideal1,and
  thata2isfirstafterit,isimpossible。Buttheymakeafirstunit
  or1,butnotalsoasecondandathird,andafirst2,butnotalsoa
  secondandathird。Clearly,also,itisnotpossible,ifallthe
  unitsareinassociable,thatthereshouldbea2-itselfanda
  3-itself;andsowiththeothernumbers。Forwhethertheunitsare
  undifferentiatedordifferenteachfromeach,numbermustbecounted
  byaddition,e。g。2byaddinganother1totheone,3byadding
  another1tothetwo,andsimilarly。Thisbeingso,numberscannot
  begeneratedastheygeneratethem,fromthe2andthe1;for2
  becomespartof3and3of4andthesamehappensinthecaseofthe
  succeedingnumbers,buttheysay4camefromthefirst2andthe
  indefinitewhichmakesittwo2’sotherthanthe2-itself;ifnot,the
  2-itselfwillbeapartof4andoneother2willbeadded。And
  similarly2willconsistofthe1-itselfandanother1;butifthisis
  so,theotherelementcannotbeanindefinite2;foritgenerates
  oneunit,not,astheindefinite2does,adefinite2。
  Again,besidesthe3-itselfandthe2-itselfhowcantherebe
  other3’sand2’s?Andhowdotheyconsistofpriorandposterior
  units?Allthisisabsurdandfictitious,andtherecannotbea
  first2andthena3-itself。Yettheremust,ifthe1andthe
  indefinitedyadaretobetheelements。Butiftheresultsare
  impossible,itisalsoimpossiblethatthesearethegenerating
  principles。
  Iftheunits,then,aredifferentiated,eachfromeach,these
  resultsandotherssimilartothesefollowofnecessity。But3if
  thoseindifferentnumbersaredifferentiated,butthoseinthesame
  numberarealoneundifferentiatedfromoneanother,evensothe
  difficultiesthatfollowarenoless。E。g。inthe10-itselftheir
  aretenunits,andthe10iscomposedbothofthemandoftwo5’s。But
  sincethe10-itselfisnotanychancenumbernorcomposedofany
  chance5’s——or,forthatmatter,units——theunitsinthis10must
  differ。Foriftheydonotdiffer,neitherwillthe5’sofwhichthe
  10consistsdiffer;butsincethesediffer,theunitsalsowill
  differ。Butiftheydiffer,willtherebenoother5’sinthe10but
  onlythesetwo,orwilltherebeothers?Iftherearenot,thisis
  paradoxical;andifthereare,whatsortof10willconsistofthem?
  Forthereisnootherinthe10butthe10itself。Butitis
  actuallynecessaryontheirviewthatthe4shouldnotconsistof
  anychance2’s;fortheindefiniteastheysay,receivedthe
  definite2andmadetwo2’s;foritsnaturewastodoublewhatit
  received。
  Again,astothe2beinganentityapartfromitstwounits,and
  the3anentityapartfromitsthreeunits,howisthispossible?
  Eitherbyone’ssharingintheother,as’paleman’isdifferent
  from’pale’and’man’foritsharesinthese,orwhenoneisa
  differentiaoftheother,as’man’isdifferentfrom’animal’and
  ’two-footed’。
  Again,somethingsareonebycontact,somebyintermixture,
  somebyposition;noneofwhichcanbelongtotheunitsofwhichthe2
  orthe3consists;butastwomenarenotaunityapartfromboth,
  somustitbewiththeunits。Andtheirbeingindivisiblewillmakeno
  differencetothem;forpointstooareindivisible,butyetapair
  ofthemisnothingapartfromthetwo。