But,further,allotherthingscannotcomefromtheFormsinany
oftheusualsensesof’from’。Andtosaythattheyarepatternsand
theotherthingsshareinthemistouseemptywordsandpoetical
metaphors。Forwhatisitthatworks,lookingtotheIdeas?Andany
thingcanbothbeandcomeintobeingwithoutbeingcopiedfrom
somethingelse,sothat,whetherSocratesexistsornot,amanlike
Socratesmightcometobe。Andevidentlythismightbesoevenif
Socrateswereeternal。Andtherewillbeseveralpatternsofthe
samething,andthereforeseveralForms;e。g。’animal’and
’two-footed’,andalso’man-himself’,willbeFormsofman。Again,the
Formsarepatternsnotonlyofsensiblethings,butofForms
themselvesalso;i。e。thegenusisthepatternofthevarious
forms-of-a-genus;thereforethesamethingwillbepatternandcopy。
Again,itwouldseemimpossiblethatsubstanceandthatwhose
substanceitisshouldexistapart;how,therefore,couldtheIdeas,
beingthesubstancesofthings,existapart?
InthePhaedothecaseisstatedinthisway-thattheFormsare
causesbothofbeingandofbecoming。YetthoughtheFormsexist,
stillthingsdonotcomeintobeing,unlessthereissomethingto
originatemovement;andmanyotherthingscomeintobeinge。g。a
houseoraringofwhichtheysaytherearenoForms。Clearly
thereforeeventhethingsofwhichtheysaythereareIdeascanboth
beandcomeintobeingowingtosuchcausesasproducethethingsjust
mentioned,andnotowingtotheForms。ButregardingtheIdeasitis
possible,bothinthiswayandbymoreabstractandaccurate
arguments,tocollectmanyobjectionslikethosewehaveconsidered。
Sincewehavediscussedthesepoints,itiswelltoconsideragain
theresultsregardingnumberswhichconfrontthosewhosaythat
numbersareseparablesubstancesandfirstcausesofthings。Ifnumber
isanentityanditssubstanceisnothingotherthanjustnumber,as
somesay,itfollowsthateither1thereisafirstinitanda
second,eachbeingdifferentinspecies,-andeitherathisistrue
oftheunitswithoutexception,andanyunitisinassociablewith
anyunit,orbtheyareallwithoutexceptionsuccessive,andanyof
themareassociablewithany,astheysayisthecasewith
mathematicalnumber;forinmathematicalnumbernooneunitisin
anywaydifferentfromanother。Orcsomeunitsmustbeassociable
andsomenot;e。g。supposethat2isfirstafter1,andthencomes3
andthentherestofthenumberseries,andtheunitsineachnumber
areassociable,e。g。thoseinthefirst2areassociablewithone
another,andthoseinthefirst3withoneanother,andsowiththe
othernumbers;buttheunitsinthe’2-itself’areinassociablewith
thoseinthe’3-itself’;andsimilarlyinthecaseoftheother
successivenumbers。Andsowhilemathematicalnumberiscounted
thus-after1,2whichconsistsofanother1besidestheformer1,
and3whichconsistsofanother1besidesthesetwo,andtheother
numberssimilarly,idealnumberiscountedthus-after1,adistinct
2whichdoesnotincludethefirst1,anda3whichdoesnotinclude
the2andtherestofthenumberseriessimilarly。Or2onekind
ofnumbermustbelikethefirstthatwasnamed,onelikethatwhich
themathematiciansspeakof,andthatwhichwehavenamedlastmustbe
athirdkind。
Again,thesekindsofnumbersmusteitherbeseparablefrom
things,ornotseparablebutinobjectsofperceptionnothowever
inthewaywhichwefirstconsidered,inthesensethatobjectsof
perceptionconsistsofnumberswhicharepresentinthem-eitherone
kindandnotanother,orallofthem。
Theseareofnecessitytheonlywaysinwhichthenumberscan
exist。Andofthosewhosaythatthe1isthebeginningand
substanceandelementofallthings,andthatnumberisformedfrom
the1andsomethingelse,almosteveryonehasdescribednumberinone
oftheseways;onlynoonehassaidalltheunitsareinassociable。
Andthishashappenedreasonablyenough;fortherecanbenoway
besidesthosementioned。Somesaybothkindsofnumberexist,that
whichhasabeforeandafterbeingidenticalwiththeIdeas,and
mathematicalnumberbeingdifferentfromtheIdeasandfromsensible
things,andbothbeingseparablefromsensiblethings;andothers
saymathematicalnumberaloneexists,asthefirstofrealities,
separatefromsensiblethings。AndthePythagoreans,also,believe
inonekindofnumber-themathematical;onlytheysayitisnot
separatebutsensiblesubstancesareformedoutofit。Forthey
constructthewholeuniverseoutofnumbers-onlynotnumbers
consistingofabstractunits;theysupposetheunitstohavespatial
magnitude。Buthowthefirst1wasconstructedsoastohave
magnitude,theyseemunabletosay。
Anotherthinkersaysthefirstkindofnumber,thatofthe
Forms,aloneexists,andsomesaymathematicalnumberisidentical
withthis。
Thecaseoflines,planes,andsolidsissimilar。Forsomethink
thatthosewhicharetheobjectsofmathematicsaredifferentfrom
thosewhichcomeaftertheIdeas;andofthosewhoexpress
themselvesotherwisesomespeakoftheobjectsofmathematicsandina
mathematicalway-viz。thosewhodonotmaketheIdeasnumbersnor
saythatIdeasexist;andothersspeakoftheobjectsof
mathematics,butnotmathematically;fortheysaythatneitheris
everyspatialmagnitudedivisibleintomagnitudes,nordoanytwo
unitstakenatrandommake2。Allwhosaythe1isanelementand
principleofthingssupposenumberstoconsistofabstractunits,
exceptthePythagoreans;buttheysupposethenumberstohave
magnitude,ashasbeensaidbefore。Itisclearfromthisstatement,
then,inhowmanywaysnumbersmaybedescribed,andthatalltheways
havebeenmentioned;andalltheseviewsareimpossible,butsome
perhapsmorethanothers。
First,then,letusinquireiftheunitsareassociableor
inassociable,andifinassociable,inwhichofthetwowayswe
distinguished。Foritispossiblethatanyunityisinassociable
withany,anditispossiblethatthoseinthe’itself’are
inassociablewiththoseinthe’itself’,and,generally,thatthosein
eachidealnumberareinassociablewiththoseinotherideal
numbers。Now1allunitsareassociableandwithoutdifference,we
getmathematicalnumber-onlyonekindofnumber,andtheIdeas
cannotbethenumbers。Forwhatsortofnumberwillman-himselfor
animal-itselforanyotherFormbe?ThereisoneIdeaofeachthing
e。g。oneofman-himselfandanotheroneofanimal-itself;butthe
similarandundifferentiatednumbersareinfinitelymany,sothat
anyparticular3isnomoreman-himselfthananyother3。Butifthe
Ideasarenotnumbers,neithercantheyexistatall。Forfromwhat
principleswilltheIdeascome?Itisnumberthatcomesfromthe1and
theindefinitedyad,andtheprinciplesorelementsaresaidtobe
principlesandelementsofnumber,andtheIdeascannotberankedas
eitherpriororposteriortothenumbers。
But2iftheunitsareinassociable,andinassociableinthe
sensethatanyisinassociablewithanyother,numberofthissort
cannotbemathematicalnumber;formathematicalnumberconsistsof
undifferentiatedunits,andthetruthsprovedofitsuitthis
character。Norcanitbeidealnumber。For2willnotproceed
immediatelyfrom1andtheindefinitedyad,andbefollowedbythe
successivenumbers,astheysay’2,3,4’fortheunitsintheidealare
generatedatthesametime,whether,asthefirstholderofthetheory
said,fromunequalscomingintobeingwhenthesewereequalizedor
insomeotherway-since,ifoneunitistobepriortotheother,it
willbeprioralsoto2thecomposedofthese;forwhenthereisone
thingpriorandanotherposterior,theresultantofthesewillbe
priortooneandposteriortotheother。
Again,sincethe1-itselfis
first,andthenthereisaparticular1whichisfirstamongthe
othersandnextafterthe1-itself,andagainathirdwhichisnext
afterthesecondandnextbutoneafterthefirst1,-sotheunitsmust
bepriortothenumbersafterwhichtheyarenamedwhenwecountthem;
e。g。therewillbeathirdunitin2before3exists,andafourthand
afifthin3beforethenumbers4and5exist-Nownoneofthese
thinkershassaidtheunitsareinassociableinthisway,but
accordingtotheirprinciplesitisreasonablethattheyshouldbe
soeveninthisway,thoughintruthitisimpossible。Foritis
reasonableboththattheunitsshouldhavepriorityandposteriority
ifthereisafirstunitorfirst1,andalsothatthe2’sshouldif
thereisafirst2;forafterthefirstitisreasonableandnecessary
thatthereshouldbeasecond,andifasecond,athird,andsowith
theotherssuccessively。Andtosayboththingsatthesametime,
thataunitisfirstandanotherunitissecondaftertheideal1,and
thata2isfirstafterit,isimpossible。Buttheymakeafirstunit
or1,butnotalsoasecondandathird,andafirst2,butnotalsoa
secondandathird。Clearly,also,itisnotpossible,ifallthe
unitsareinassociable,thatthereshouldbea2-itselfanda
3-itself;andsowiththeothernumbers。Forwhethertheunitsare
undifferentiatedordifferenteachfromeach,numbermustbecounted
byaddition,e。g。2byaddinganother1totheone,3byadding
another1tothetwo,andsimilarly。Thisbeingso,numberscannot
begeneratedastheygeneratethem,fromthe2andthe1;for2
becomespartof3and3of4andthesamehappensinthecaseofthe
succeedingnumbers,buttheysay4camefromthefirst2andthe
indefinitewhichmakesittwo2’sotherthanthe2-itself;ifnot,the
2-itselfwillbeapartof4andoneother2willbeadded。And
similarly2willconsistofthe1-itselfandanother1;butifthisis
so,theotherelementcannotbeanindefinite2;foritgenerates
oneunit,not,astheindefinite2does,adefinite2。
Again,besidesthe3-itselfandthe2-itselfhowcantherebe
other3’sand2’s?Andhowdotheyconsistofpriorandposterior
units?Allthisisabsurdandfictitious,andtherecannotbea
first2andthena3-itself。Yettheremust,ifthe1andthe
indefinitedyadaretobetheelements。Butiftheresultsare
impossible,itisalsoimpossiblethatthesearethegenerating
principles。
Iftheunits,then,aredifferentiated,eachfromeach,these
resultsandotherssimilartothesefollowofnecessity。But3if
thoseindifferentnumbersaredifferentiated,butthoseinthesame
numberarealoneundifferentiatedfromoneanother,evensothe
difficultiesthatfollowarenoless。E。g。inthe10-itselftheir
aretenunits,andthe10iscomposedbothofthemandoftwo5’s。But
sincethe10-itselfisnotanychancenumbernorcomposedofany
chance5’s——or,forthatmatter,units——theunitsinthis10must
differ。Foriftheydonotdiffer,neitherwillthe5’sofwhichthe
10consistsdiffer;butsincethesediffer,theunitsalsowill
differ。Butiftheydiffer,willtherebenoother5’sinthe10but
onlythesetwo,orwilltherebeothers?Iftherearenot,thisis
paradoxical;andifthereare,whatsortof10willconsistofthem?
Forthereisnootherinthe10butthe10itself。Butitis
actuallynecessaryontheirviewthatthe4shouldnotconsistof
anychance2’s;fortheindefiniteastheysay,receivedthe
definite2andmadetwo2’s;foritsnaturewastodoublewhatit
received。
Again,astothe2beinganentityapartfromitstwounits,and
the3anentityapartfromitsthreeunits,howisthispossible?
Eitherbyone’ssharingintheother,as’paleman’isdifferent
from’pale’and’man’foritsharesinthese,orwhenoneisa
differentiaoftheother,as’man’isdifferentfrom’animal’and
’two-footed’。
Again,somethingsareonebycontact,somebyintermixture,
somebyposition;noneofwhichcanbelongtotheunitsofwhichthe2
orthe3consists;butastwomenarenotaunityapartfromboth,
somustitbewiththeunits。Andtheirbeingindivisiblewillmakeno
differencetothem;forpointstooareindivisible,butyetapair
ofthemisnothingapartfromthetwo。