Butthisconsequencealsowemustnotforget,thatitfollowsthat
therearepriorandposterior2andsimilarlywiththeother
numbers。Forletthe2’sinthe4besimultaneous;yettheseareprior
tothoseinthe8andasthe2generatedthem,theygeneratedthe
4’sinthe8-itself。Thereforeifthefirst2isanIdea,these2’s
alsowillbeIdeasofsomekind。Andthesameaccountappliestothe
units;fortheunitsinthefirst2generatethefourin4,sothat
alltheunitscometobeIdeasandanIdeawillbecomposedof
Ideas。Clearlythereforethosethingsalsoofwhichthesehappentobe
theIdeaswillbecomposite,e。g。onemightsaythatanimalsare
composedofanimals,ifthereareIdeasofthem。
Ingeneral,todifferentiatetheunitsinanywayisan
absurdityandafiction;andbyafictionImeanaforcedstatement
madetosuitahypothesis。Forneitherinquantitynorinqualitydo
weseeunitdifferingfromunit,andnumbermustbeeitherequalor
unequal-allnumberbutespeciallythatwhichconsistsofabstract
units-sothatifonenumberisneithergreaternorlessthan
another,itisequaltoit;butthingsthatareequalandinnowise
differentiatedwetaketobethesamewhenwearespeakingofnumbers。
Ifnot,noteventhe2inthe10-itselfwillbeundifferentiated,
thoughtheyareequal;forwhatreasonwillthemanwhoallegesthat
theyarenotdifferentiatedbeabletogive?
Again,ifeveryunitanotherunitmakestwo,aunitfromthe
2-itselfandonefromthe3-itselfwillmakea2。Nowathiswill
consistofdifferentiatedunits;andwillitbepriortothe3or
posterior?Itratherseemsthatitmustbeprior;foroneoftheunits
issimultaneouswiththe3andtheotherissimultaneouswiththe2。
Andwe,forourpart,supposethatingeneral1and1,whetherthe
thingsareequalorunequal,is2,e。g。thegoodandthebad,oraman
andahorse;butthosewhoholdtheseviewssaythatnoteventwo
unitsare2。
Ifthenumberofthe3-itselfisnotgreaterthanthatofthe2,
thisissurprising;andifitisgreater,clearlythereisalsoa
numberinitequaltothe2,sothatthisisnotdifferentfromthe
2-itself。Butthisisnotpossible,ifthereisafirstandasecond
number。
NorwilltheIdeasbenumbers。Forinthisparticularpointthey
arerightwhoclaimthattheunitsmustbedifferent,ifthereare
tobeIdeas;ashasbeensaidbefore。FortheFormisunique;butif
theunitsarenotdifferent,the2’sandthe3’salsowillnotbe
different。Thisisalsothereasonwhytheymustsaythatwhenwe
countthus-’1,2’-wedonotproceedbyaddingtothegivennumber;
forifwedo,neitherwillthenumbersbegeneratedfromthe
indefinitedyad,norcananumberbeanIdea;forthenoneIdeawill
beinanother,andallFormswillbepartsofoneForm。Andsowith
aviewtotheirhypothesistheirstatementsareright,butasa
wholetheyarewrong;fortheirviewisverydestructive,sincethey
willadmitthatthisquestionitselfaffordssome
difficulty-whether,whenwecountandsay-1,2,3-wecountby
additionorbyseparateportions。Butwedoboth;andsoitis
absurdtoreasonbackfromthisproblemtosogreatadifferenceof
essence。
Firstofallitiswelltodeterminewhatisthedifferentiaof
anumber-andofaunit,ifithasadifferentia。Unitsmustdiffer
eitherinquantityorinquality;andneitheroftheseseemstobe
possible。Butnumberquanumberdiffersinquantity。Andifthe
unitsalsodiddifferinquantity,numberwoulddifferfromnumber,
thoughequalinnumberofunits。Again,arethefirstunitsgreateror
smaller,anddothelateronesincreaseordiminish?Alltheseare
irrationalsuppositions。Butneithercantheydifferinquality。For
noattributecanattachtothem;foreventonumbersqualityissaid
tobelongafterquantity。Again,qualitycouldnotcometothemeither
fromthe1orthedyad;fortheformerhasnoquality,andthe
lattergivesquantity;forthisentityiswhatmakesthingstobe
many。Ifthefactsarereallyotherwise,theyshouldstatethis
quiteatthebeginninganddetermineifpossible,regardingthe
differentiaoftheunit,whyitmustexist,and,failingthis,what
differentiatheymean。
Evidentlythen,iftheIdeasarenumbers,theunitscannotall
beassociable,norcantheybeinassociableineitherofthetwoways。
Butneitheristhewayinwhichsomeothersspeakaboutnumbers
correct。ThesearethosewhodonotthinkthereareIdeas,either
withoutqualificationorasidentifiedwithcertainnumbers,butthink
theobjectsofmathematicsexistandthenumbersarethefirstof
existingthings,andthe1-itselfisthestarting-pointofthem。Itis
paradoxicalthatthereshouldbea1whichisfirstof1’s,asthey
say,butnota2whichisfirstof2’s,nora3of3’s;forthesame
reasoningappliestoall。If,then,thefactswithregardtonumber
areso,andonesupposesmathematicalnumberalonetoexist,the1
isnotthestarting-pointforthissortof1mustdifferfrom
the-otherunits;andifthisisso,theremustalsobea2whichis
firstof2’s,andsimilarlywiththeothersuccessivenumbers。Butif
the1isthestarting-point,thetruthaboutthenumbersmustrather
bewhatPlatousedtosay,andtheremustbeafirst2and3and
numbersmustnotbeassociablewithoneanother。Butifontheother
handonesupposesthis,manyimpossibleresults,aswehavesaid,
follow。Buteitherthisortheothermustbethecase,sothatif
neitheris,numbercannotexistseparately。
Itisevident,also,fromthisthatthethirdversionisthe
worst,-theviewidealandmathematicalnumberisthesame。Fortwo
mistakesmustthenmeetintheoneopinion。1Mathematicalnumber
cannotbeofthissort,buttheholderofthisviewhastospinitout
bymakingsuppositionspeculiartohimself。And2hemustalsoadmit
alltheconsequencesthatconfrontthosewhospeakofnumberinthe
senseof’Forms’。
ThePythagoreanversioninonewayaffordsfewerdifficultiesthan
thosebeforenamed,butinanotherwayhasotherspeculiarto
itself。Fornotthinkingofnumberascapableofexistingseparately
removesmanyoftheimpossibleconsequences;butthatbodiesshouldbe
composedofnumbers,andthatthisshouldbemathematicalnumber,is
impossible。Foritisnottruetospeakofindivisiblespatial
magnitudes;andhowevermuchtheremightbemagnitudesofthissort,
unitsatleasthavenotmagnitude;andhowcanamagnitudebecomposed
ofindivisibles?Butarithmeticalnumber,atleast,consistsofunits,
whilethesethinkersidentifynumberwithrealthings;atanyrate
theyapplytheirpropositionstobodiesasiftheyconsistedof
thosenumbers。
If,then,itisnecessary,ifnumberisaself-subsistentreal
thing,thatitshouldexistinoneofthesewayswhichhavebeen
mentioned,andifitcannotexistinanyofthese,evidentlynumber
hasnosuchnatureasthosewhomakeitseparablesetupforit。
Again,doeseachunitcomefromthegreatandthesmall,
equalized,oronefromthesmall,anotherfromthegreat?aIfthe
latter,neitherdoeseachthingcontainalltheelements,norare
theunitswithoutdifference;forinonethereisthegreatandin
anotherthesmall,whichiscontraryinitsnaturetothegreat。
Again,howisitwiththeunitsinthe3-itself?Oneofthemisanodd
unit。Butperhapsitisforthisreasonthattheygive1-itselfthe
middleplaceinoddnumbers。bButifeachofthetwounitsconsists
ofboththegreatandthesmall,equalized,howwillthe2whichis
asinglething,consistofthegreatandthesmall?Orhowwillit
differfromtheunit?Again,theunitispriortothe2;forwhenit
isdestroyedthe2isdestroyed。Itmust,then,betheIdeaofanIdea
sinceitispriortoanIdea,anditmusthavecomeintobeing
beforeit。Fromwhat,then?Notfromtheindefinitedyad,forits
functionwastodouble。
Again,numbermustbeeitherinfiniteorfinite;forthese
thinkersthinkofnumberascapableofexistingseparately,sothatit
isnotpossiblethatneitherofthosealternativesshouldbetrue。
Clearlyitcannotbeinfinite;forinfinitenumberisneitherodd
noreven,butthegenerationofnumbersisalwaysthegeneration
eitherofanoddorofanevennumber;inoneway,when1operates
onanevennumber,anoddnumberisproduced;inanotherway,when2
operates,thenumbersgotfrom1bydoublingareproduced;in
anotherway,whentheoddnumbersoperate,theotherevennumbers
areproduced。Again,ifeveryIdeaisanIdeaofsomething,andthe
numbersareIdeas,infinitenumberitselfwillbeanIdeaof
something,eitherofsomesensiblethingorofsomethingelse。Yet
thisisnotpossibleinviewoftheirthesisanymorethanitis
reasonableinitself,atleastiftheyarrangetheIdeasastheydo。
Butifnumberisfinite,howfardoesitgo?Withregardtothis
notonlythefactbutthereasonshouldbestated。Butifnumber
goesonlyupto10assomesay,firstlytheFormswillsoonrunshort;
e。g。if3isman-himself,whatnumberwillbethehorse-itself?The
seriesofthenumberswhicharetheseveralthings-themselvesgoes
upto10。Itmust,then,beoneofthenumberswithintheselimits;
foritisthesethataresubstancesandIdeas。Yettheywillrun
short;forthevariousformsofanimalwilloutnumberthem。Atthe
sametimeitisclearthatifinthiswaythe3isman-himself,the
other3’saresoalsoforthoseinidenticalnumbersaresimilar,so
thattherewillbeaninfinitenumberofmen;ifeach3isanIdea,
eachofthenumberswillbeman-himself,andifnot,theywillat
leastbemen。Andifthesmallernumberispartofthegreater
beingnumberofsuchasortthattheunitsinthesamenumberare
associable,thenifthe4-itselfisanIdeaofsomething,e。g。of
’horse’orof’white’,manwillbeapartofhorse,ifmanisItis
paradoxicalalsothatthereshouldbeanIdeaof10butnotof11,nor
ofthesucceedingnumbers。Again,therebothareandcometobe
certainthingsofwhichtherearenoForms;why,then,aretherenot
Formsofthemalso?WeinferthattheFormsarenotcauses。Again,
itisparadoxical-ifthenumberseriesupto10ismoreofareal
thingandaFormthan10itself。Thereisnogenerationofthe
formerasonething,andthereisofthelatter。Buttheytryto
workontheassumptionthattheseriesofnumbersupto10isa
completeseries。Atleasttheygeneratethederivatives-e。g。thevoid,
proportion,theodd,andtheothersofthiskind-withinthedecade。
Forsomethings,e。g。movementandrest,goodandbad,theyassign
totheoriginativeprinciples,andtheotherstothenumbers。This
iswhytheyidentifytheoddwith1;foriftheoddimplied3how
would5beodd?Again,spatialmagnitudesandallsuchthingsare
explainedwithoutgoingbeyondadefinitenumber;e。g。thefirst,
theindivisible,line,thenthe2&c。;theseentitiesalsoextendonly
upto10。
Again,ifnumbercanexistseparately,onemightaskwhichis
prior-1,or3or2?Inasmuchasthenumberiscomposite,1isprior,
butinasmuchastheuniversalandtheformisprior,thenumberis
prior;foreachoftheunitsispartofthenumberasitsmatter,
andthenumberactsasform。Andinasensetherightangleisprior
totheacute,becauseitisdeterminateandinvirtueofits
definition;butinasensetheacuteisprior,becauseitisapart
andtherightangleisdividedintoacuteangles。Asmatter,then,the
acuteangleandtheelementandtheunitareprior,butinrespect
oftheformandofthesubstanceasexpressedinthedefinition,the
rightangle,andthewholeconsistingofthematterandtheform,
areprior;fortheconcretethingisnearertotheformandtowhatis
expressedinthedefinition,thoughingenerationitislater。How
thenis1thestarting-point?Becauseitisnotdivisiable,they
say;butboththeuniversal,andtheparticularortheelement,are
indivisible。Buttheyarestarting-pointsindifferentways,onein
definitionandtheotherintime。Inwhichway,then,is1the