Butthisconsequencealsowemustnotforget,thatitfollowsthat
  therearepriorandposterior2andsimilarlywiththeother
  numbers。Forletthe2’sinthe4besimultaneous;yettheseareprior
  tothoseinthe8andasthe2generatedthem,theygeneratedthe
  4’sinthe8-itself。Thereforeifthefirst2isanIdea,these2’s
  alsowillbeIdeasofsomekind。Andthesameaccountappliestothe
  units;fortheunitsinthefirst2generatethefourin4,sothat
  alltheunitscometobeIdeasandanIdeawillbecomposedof
  Ideas。Clearlythereforethosethingsalsoofwhichthesehappentobe
  theIdeaswillbecomposite,e。g。onemightsaythatanimalsare
  composedofanimals,ifthereareIdeasofthem。
  Ingeneral,todifferentiatetheunitsinanywayisan
  absurdityandafiction;andbyafictionImeanaforcedstatement
  madetosuitahypothesis。Forneitherinquantitynorinqualitydo
  weseeunitdifferingfromunit,andnumbermustbeeitherequalor
  unequal-allnumberbutespeciallythatwhichconsistsofabstract
  units-sothatifonenumberisneithergreaternorlessthan
  another,itisequaltoit;butthingsthatareequalandinnowise
  differentiatedwetaketobethesamewhenwearespeakingofnumbers。
  Ifnot,noteventhe2inthe10-itselfwillbeundifferentiated,
  thoughtheyareequal;forwhatreasonwillthemanwhoallegesthat
  theyarenotdifferentiatedbeabletogive?
  Again,ifeveryunitanotherunitmakestwo,aunitfromthe
  2-itselfandonefromthe3-itselfwillmakea2。Nowathiswill
  consistofdifferentiatedunits;andwillitbepriortothe3or
  posterior?Itratherseemsthatitmustbeprior;foroneoftheunits
  issimultaneouswiththe3andtheotherissimultaneouswiththe2。
  Andwe,forourpart,supposethatingeneral1and1,whetherthe
  thingsareequalorunequal,is2,e。g。thegoodandthebad,oraman
  andahorse;butthosewhoholdtheseviewssaythatnoteventwo
  unitsare2。
  Ifthenumberofthe3-itselfisnotgreaterthanthatofthe2,
  thisissurprising;andifitisgreater,clearlythereisalsoa
  numberinitequaltothe2,sothatthisisnotdifferentfromthe
  2-itself。Butthisisnotpossible,ifthereisafirstandasecond
  number。
  NorwilltheIdeasbenumbers。Forinthisparticularpointthey
  arerightwhoclaimthattheunitsmustbedifferent,ifthereare
  tobeIdeas;ashasbeensaidbefore。FortheFormisunique;butif
  theunitsarenotdifferent,the2’sandthe3’salsowillnotbe
  different。Thisisalsothereasonwhytheymustsaythatwhenwe
  countthus-’1,2’-wedonotproceedbyaddingtothegivennumber;
  forifwedo,neitherwillthenumbersbegeneratedfromthe
  indefinitedyad,norcananumberbeanIdea;forthenoneIdeawill
  beinanother,andallFormswillbepartsofoneForm。Andsowith
  aviewtotheirhypothesistheirstatementsareright,butasa
  wholetheyarewrong;fortheirviewisverydestructive,sincethey
  willadmitthatthisquestionitselfaffordssome
  difficulty-whether,whenwecountandsay-1,2,3-wecountby
  additionorbyseparateportions。Butwedoboth;andsoitis
  absurdtoreasonbackfromthisproblemtosogreatadifferenceof
  essence。
  Firstofallitiswelltodeterminewhatisthedifferentiaof
  anumber-andofaunit,ifithasadifferentia。Unitsmustdiffer
  eitherinquantityorinquality;andneitheroftheseseemstobe
  possible。Butnumberquanumberdiffersinquantity。Andifthe
  unitsalsodiddifferinquantity,numberwoulddifferfromnumber,
  thoughequalinnumberofunits。Again,arethefirstunitsgreateror
  smaller,anddothelateronesincreaseordiminish?Alltheseare
  irrationalsuppositions。Butneithercantheydifferinquality。For
  noattributecanattachtothem;foreventonumbersqualityissaid
  tobelongafterquantity。Again,qualitycouldnotcometothemeither
  fromthe1orthedyad;fortheformerhasnoquality,andthe
  lattergivesquantity;forthisentityiswhatmakesthingstobe
  many。Ifthefactsarereallyotherwise,theyshouldstatethis
  quiteatthebeginninganddetermineifpossible,regardingthe
  differentiaoftheunit,whyitmustexist,and,failingthis,what
  differentiatheymean。
  Evidentlythen,iftheIdeasarenumbers,theunitscannotall
  beassociable,norcantheybeinassociableineitherofthetwoways。
  Butneitheristhewayinwhichsomeothersspeakaboutnumbers
  correct。ThesearethosewhodonotthinkthereareIdeas,either
  withoutqualificationorasidentifiedwithcertainnumbers,butthink
  theobjectsofmathematicsexistandthenumbersarethefirstof
  existingthings,andthe1-itselfisthestarting-pointofthem。Itis
  paradoxicalthatthereshouldbea1whichisfirstof1’s,asthey
  say,butnota2whichisfirstof2’s,nora3of3’s;forthesame
  reasoningappliestoall。If,then,thefactswithregardtonumber
  areso,andonesupposesmathematicalnumberalonetoexist,the1
  isnotthestarting-pointforthissortof1mustdifferfrom
  the-otherunits;andifthisisso,theremustalsobea2whichis
  firstof2’s,andsimilarlywiththeothersuccessivenumbers。Butif
  the1isthestarting-point,thetruthaboutthenumbersmustrather
  bewhatPlatousedtosay,andtheremustbeafirst2and3and
  numbersmustnotbeassociablewithoneanother。Butifontheother
  handonesupposesthis,manyimpossibleresults,aswehavesaid,
  follow。Buteitherthisortheothermustbethecase,sothatif
  neitheris,numbercannotexistseparately。
  Itisevident,also,fromthisthatthethirdversionisthe
  worst,-theviewidealandmathematicalnumberisthesame。Fortwo
  mistakesmustthenmeetintheoneopinion。1Mathematicalnumber
  cannotbeofthissort,buttheholderofthisviewhastospinitout
  bymakingsuppositionspeculiartohimself。And2hemustalsoadmit
  alltheconsequencesthatconfrontthosewhospeakofnumberinthe
  senseof’Forms’。
  ThePythagoreanversioninonewayaffordsfewerdifficultiesthan
  thosebeforenamed,butinanotherwayhasotherspeculiarto
  itself。Fornotthinkingofnumberascapableofexistingseparately
  removesmanyoftheimpossibleconsequences;butthatbodiesshouldbe
  composedofnumbers,andthatthisshouldbemathematicalnumber,is
  impossible。Foritisnottruetospeakofindivisiblespatial
  magnitudes;andhowevermuchtheremightbemagnitudesofthissort,
  unitsatleasthavenotmagnitude;andhowcanamagnitudebecomposed
  ofindivisibles?Butarithmeticalnumber,atleast,consistsofunits,
  whilethesethinkersidentifynumberwithrealthings;atanyrate
  theyapplytheirpropositionstobodiesasiftheyconsistedof
  thosenumbers。
  If,then,itisnecessary,ifnumberisaself-subsistentreal
  thing,thatitshouldexistinoneofthesewayswhichhavebeen
  mentioned,andifitcannotexistinanyofthese,evidentlynumber
  hasnosuchnatureasthosewhomakeitseparablesetupforit。
  Again,doeseachunitcomefromthegreatandthesmall,
  equalized,oronefromthesmall,anotherfromthegreat?aIfthe
  latter,neitherdoeseachthingcontainalltheelements,norare
  theunitswithoutdifference;forinonethereisthegreatandin
  anotherthesmall,whichiscontraryinitsnaturetothegreat。
  Again,howisitwiththeunitsinthe3-itself?Oneofthemisanodd
  unit。Butperhapsitisforthisreasonthattheygive1-itselfthe
  middleplaceinoddnumbers。bButifeachofthetwounitsconsists
  ofboththegreatandthesmall,equalized,howwillthe2whichis
  asinglething,consistofthegreatandthesmall?Orhowwillit
  differfromtheunit?Again,theunitispriortothe2;forwhenit
  isdestroyedthe2isdestroyed。Itmust,then,betheIdeaofanIdea
  sinceitispriortoanIdea,anditmusthavecomeintobeing
  beforeit。Fromwhat,then?Notfromtheindefinitedyad,forits
  functionwastodouble。
  Again,numbermustbeeitherinfiniteorfinite;forthese
  thinkersthinkofnumberascapableofexistingseparately,sothatit
  isnotpossiblethatneitherofthosealternativesshouldbetrue。
  Clearlyitcannotbeinfinite;forinfinitenumberisneitherodd
  noreven,butthegenerationofnumbersisalwaysthegeneration
  eitherofanoddorofanevennumber;inoneway,when1operates
  onanevennumber,anoddnumberisproduced;inanotherway,when2
  operates,thenumbersgotfrom1bydoublingareproduced;in
  anotherway,whentheoddnumbersoperate,theotherevennumbers
  areproduced。Again,ifeveryIdeaisanIdeaofsomething,andthe
  numbersareIdeas,infinitenumberitselfwillbeanIdeaof
  something,eitherofsomesensiblethingorofsomethingelse。Yet
  thisisnotpossibleinviewoftheirthesisanymorethanitis
  reasonableinitself,atleastiftheyarrangetheIdeasastheydo。
  Butifnumberisfinite,howfardoesitgo?Withregardtothis
  notonlythefactbutthereasonshouldbestated。Butifnumber
  goesonlyupto10assomesay,firstlytheFormswillsoonrunshort;
  e。g。if3isman-himself,whatnumberwillbethehorse-itself?The
  seriesofthenumberswhicharetheseveralthings-themselvesgoes
  upto10。Itmust,then,beoneofthenumberswithintheselimits;
  foritisthesethataresubstancesandIdeas。Yettheywillrun
  short;forthevariousformsofanimalwilloutnumberthem。Atthe
  sametimeitisclearthatifinthiswaythe3isman-himself,the
  other3’saresoalsoforthoseinidenticalnumbersaresimilar,so
  thattherewillbeaninfinitenumberofmen;ifeach3isanIdea,
  eachofthenumberswillbeman-himself,andifnot,theywillat
  leastbemen。Andifthesmallernumberispartofthegreater
  beingnumberofsuchasortthattheunitsinthesamenumberare
  associable,thenifthe4-itselfisanIdeaofsomething,e。g。of
  ’horse’orof’white’,manwillbeapartofhorse,ifmanisItis
  paradoxicalalsothatthereshouldbeanIdeaof10butnotof11,nor
  ofthesucceedingnumbers。Again,therebothareandcometobe
  certainthingsofwhichtherearenoForms;why,then,aretherenot
  Formsofthemalso?WeinferthattheFormsarenotcauses。Again,
  itisparadoxical-ifthenumberseriesupto10ismoreofareal
  thingandaFormthan10itself。Thereisnogenerationofthe
  formerasonething,andthereisofthelatter。Buttheytryto
  workontheassumptionthattheseriesofnumbersupto10isa
  completeseries。Atleasttheygeneratethederivatives-e。g。thevoid,
  proportion,theodd,andtheothersofthiskind-withinthedecade。
  Forsomethings,e。g。movementandrest,goodandbad,theyassign
  totheoriginativeprinciples,andtheotherstothenumbers。This
  iswhytheyidentifytheoddwith1;foriftheoddimplied3how
  would5beodd?Again,spatialmagnitudesandallsuchthingsare
  explainedwithoutgoingbeyondadefinitenumber;e。g。thefirst,
  theindivisible,line,thenthe2&c。;theseentitiesalsoextendonly
  upto10。
  Again,ifnumbercanexistseparately,onemightaskwhichis
  prior-1,or3or2?Inasmuchasthenumberiscomposite,1isprior,
  butinasmuchastheuniversalandtheformisprior,thenumberis
  prior;foreachoftheunitsispartofthenumberasitsmatter,
  andthenumberactsasform。Andinasensetherightangleisprior
  totheacute,becauseitisdeterminateandinvirtueofits
  definition;butinasensetheacuteisprior,becauseitisapart
  andtherightangleisdividedintoacuteangles。Asmatter,then,the
  acuteangleandtheelementandtheunitareprior,butinrespect
  oftheformandofthesubstanceasexpressedinthedefinition,the
  rightangle,andthewholeconsistingofthematterandtheform,
  areprior;fortheconcretethingisnearertotheformandtowhatis
  expressedinthedefinition,thoughingenerationitislater。How
  thenis1thestarting-point?Becauseitisnotdivisiable,they
  say;butboththeuniversal,andtheparticularortheelement,are
  indivisible。Buttheyarestarting-pointsindifferentways,onein
  definitionandtheotherintime。Inwhichway,then,is1the