starting-point?Ashasbeensaid,therightangleisthoughttobe
  priortotheacute,andtheacutetotheright,andeachisone。
  Accordinglytheymake1thestarting-pointinbothways。Butthisis
  impossible。Fortheuniversalisoneasformorsubstance,whilethe
  elementisoneasapartorasmatter。Foreachofthetwoisina
  senseone-intrutheachofthetwounitsexistspotentiallyat
  leastifthenumberisaunityandnotlikeaheap,i。e。if
  differentnumbersconsistofdifferentiatedunits,astheysay,but
  notincompletereality;andthecauseoftheerrortheyfellinto
  isthattheywereconductingtheirinquiryatthesametimefromthe
  standpointofmathematicsandfromthatofuniversaldefinitions,so
  that1fromtheformerstandpointtheytreatedunity,theirfirst
  principle,asapoint;fortheunitisapointwithoutposition。
  Theyputthingstogetheroutofthesmallestparts,assomeothers
  alsohavedone。Thereforetheunitbecomesthematterofnumbersand
  atthesametimepriorto2;andagainposterior,2beingtreatedasa
  whole,aunity,andaform。But2becausetheywereseekingthe
  universaltheytreatedtheunitywhichcanbepredicatedofa
  number,asinthissensealsoapartofthenumber。Butthese
  characteristicscannotbelongatthesametimetothesamething。
  Ifthe1-itselfmustbeunitaryforitdiffersinnothingfrom
  other1’sexceptthatitisthestarting-point,andthe2is
  divisiblebuttheunitisnot,theunitmustbelikerthe1-itself
  thanthe2is。Butiftheunitislikerit,itmustbelikertothe
  unitthantothe2;thereforeeachoftheunitsin2mustbeprior
  tothe2。Buttheydenythis;atleasttheygeneratethe2first。
  Again,ifthe2-itselfisaunityandthe3-itselfisonealso,both
  forma2。Fromwhat,then,isthis2produced?
  Sincethereisnotcontactinnumbers,butsuccession,viz。
  betweentheunitsbetweenwhichthereisnothing,e。g。betweenthose
  in2orin3onemightaskwhetherthesesucceedthe1-itselfor
  not,andwhether,ofthetermsthatsucceedit,2oreitherofthe
  unitsin2isprior。
  Similardifficultiesoccurwithregardtotheclassesofthings
  posteriortonumber,-theline,theplane,andthesolid。Forsome
  constructtheseoutofthespeciesofthe’greatandsmall’;e。g。
  linesfromthe’longandshort’,planesfromthe’broadandnarrow’,
  massesfromthe’deepandshallow’;whicharespeciesofthe’great
  andsmall’。Andtheoriginativeprincipleofsuchthingswhichanswers
  tothe1differentthinkersdescribeindifferentways,Andinthese
  alsotheimpossibilities,thefictions,andthecontradictionsof
  allprobabilityareseentobeinnumerable。Forigeometrical
  classesareseveredfromoneanother,unlesstheprinciplesofthese
  areimpliedinoneanotherinsuchawaythatthe’broadandnarrow’
  isalso’longandshort’butifthisisso,theplanewillbeline
  andthesolidaplane;again,howwillanglesandfiguresandsuch
  thingsbeexplained?。Andiithesamehappensasinregardto
  number;for’longandshort’,&c。,areattributesofmagnitude,but
  magnitudedoesnotconsistofthese,anymorethanthelineconsists
  of’straightandcurved’,orsolidsof’smoothandrough’。
  Alltheseviewsshareadifficultywhichoccurswithregardto
  species-of-a-genus,whenonepositstheuniversals,viz。whetheritis
  animal-itselforsomethingotherthananimal-itselfthatisinthe
  particularanimal。True,iftheuniversalisnotseparablefrom
  sensiblethings,thiswillpresentnodifficulty;butifthe1andthe
  numbersareseparable,asthosewhoexpresstheseviewssay,itisnot
  easytosolvethedifficulty,ifonemayapplythewords’noteasy’to
  theimpossible。Forwhenweapprehendtheunityin2,oringeneralin
  anumber,doweapprehendathing-itselforsomethingelse?。
  Some,then,generatespatialmagnitudesfrommatterofthis
  sort,othersfromthepoint-andthepointisthoughtbythemtobe
  not1butsomethinglike1-andfromothermatterlikeplurality,but
  notidenticalwithit;aboutwhichprinciplesnonethelessthesame
  difficultiesoccur。Forifthematterisone,lineandplane-and
  soliwillbethesame;forfromthesameelementswillcomeoneand
  thesamething。Butifthemattersaremorethanone,andthereisone
  forthelineandasecondfortheplaneandanotherforthesolid,
  theyeitherareimpliedinoneanotherornot,sothatthesame
  resultswillfollowevenso;foreithertheplanewillnotcontaina
  lineoritwillhealine。
  Again,hownumbercanconsistoftheoneandplurality,they
  makenoattempttoexplain;buthowevertheyexpressthemselves,the
  sameobjectionsariseasconfrontthosewhoconstructnumberoutof
  theoneandtheindefinitedyad。Fortheoneviewgeneratesnumber
  fromtheuniversallypredicatedplurality,andnotfromaparticular
  plurality;andtheothergeneratesitfromaparticularplurality,but
  thefirst;for2issaidtobea’firstplurality’。Thereforethereis
  practicallynodifference,butthesamedifficultieswillfollow,-is
  itintermixtureorpositionorblendingorgeneration?andsoon。
  Aboveallonemightpressthequestion’ifeachunitisone,whatdoes
  itcomefrom?’Certainlyeachisnottheone-itself。Itmust,then,
  comefromtheoneitselfandplurality,orapartofplurality。Tosay
  thattheunitisapluralityisimpossible,foritisindivisible;and
  togenerateitfromapartofpluralityinvolvesmanyother
  objections;foraeachofthepartsmustbeindivisibleorit
  willbeapluralityandtheunitwillbedivisibleandtheelements
  willnotbetheoneandplurality;forthesingleunitsdonotcome
  frompluralityandtheone。Again,,theholderofthisviewdoes
  nothingbutpresupposeanothernumber;forhispluralityof
  indivisiblesisanumber。Again,wemustinquire,inviewofthis
  theoryalso,whetherthenumberisinfiniteorfinite。Fortherewas
  atfirst,asitseems,apluralitythatwasitselffinite,from
  whichandfromtheonecomesthefinitenumberofunits。Andthere
  isanotherpluralitythatisplurality-itselfandinfinite
  plurality;whichsortofplurality,then,istheelementwhich
  co-operateswiththeone?Onemightinquiresimilarlyaboutthepoint,
  i。e。theelementoutofwhichtheymakespatialmagnitudes。Forsurely
  thisisnottheoneandonlypoint;atanyrate,then,letthemsay
  outofwhateachofthepointsisformed。Certainlynotofsome
  distancethepoint-itself。Noragaincantherebeindivisible
  partsofadistance,astheelementsoutofwhichtheunitsaresaid
  tobemadeareindivisiblepartsofplurality;fornumberconsists
  ofindivisibles,butspatialmagnitudesdonot。
  Alltheseobjections,then,andothersofthesortmakeitevident
  thatnumberandspatialmagnitudescannotexistapartfromthings。
  Again,thediscordaboutnumbersbetweenthevariousversionsisa
  signthatitistheincorrectnessoftheallegedfactsthemselvesthat
  bringsconfusionintothetheories。Forthosewhomaketheobjects
  ofmathematicsaloneexistapartfromsensiblethings,seeingthe
  difficultyabouttheFormsandtheirfictitiousness,abandonedideal
  numberandpositedmathematical。Butthosewhowishedtomakethe
  Formsatthesametimealsonumbers,butdidnotsee,ifoneassumed
  theseprinciples,howmathematicalnumberwastoexistapartfrom
  ideal,madeidealandmathematicalnumberthesame-inwords,since
  infactmathematicalnumberhasbeendestroyed;fortheystate
  hypothesespeculiartothemselvesandnotthoseofmathematics。Andhe
  whofirstsupposedthattheFormsexistandthattheFormsarenumbers
  andthattheobjectsofmathematicsexist,naturallyseparatedthe
  two。Thereforeitturnsoutthatallofthemarerightinsome
  respect,butonthewholenotright。Andtheythemselvesconfirmthis,
  fortheirstatementsdonotagreebutconflict。Thecauseisthat
  theirhypothesesandtheirprinciplesarefalse。Anditishardto
  makeagoodcaseoutofbadmaterials,accordingtoEpicharmus:’as
  soonas’tissaid,’tisseentobewrong。’
  Butregardingnumbersthequestionswehaveraisedandthe
  conclusionswehavereachedaresufficientforwhilehewhois
  alreadyconvincedmightbefurtherconvincedbyalongerdiscussion,
  onenotyetconvincedwouldnotcomeanynearertoconviction;
  regardingthefirstprinciplesandthefirstcausesandelements,
  theviewsexpressedbythosewhodiscussonlysensiblesubstance
  havebeenpartlystatedinourworksonnature,andpartlydonot
  belongtothepresentinquiry;buttheviewsofthosewhoassert
  thatthereareothersubstancesbesidesthesensiblemustbe
  considerednextafterthosewehavebeenmentioning。Since,then,some
  saythattheIdeasandthenumbersaresuchsubstances,andthatthe
  elementsoftheseareelementsandprinciplesofrealthings,we
  mustinquireregardingthesewhattheysayandinwhatsensethey
  sayit。
  Thosewhopositnumbersonly,andthesemathematical,mustbe
  consideredlater;butasregardsthosewhobelieveintheIdeasone
  mightsurveyatthesametimetheirwayofthinkingandthedifficulty
  intowhichtheyfall。FortheyatthesametimemaketheIdeas
  universalandagaintreatthemasseparableandasindividuals。That
  thisisnotpossiblehasbeenarguedbefore。Thereasonwhythose
  whodescribedtheirsubstancesasuniversalcombinedthesetwo
  characteristicsinonething,isthattheydidnotmakesubstances
  identicalwithsensiblethings。Theythoughtthattheparticularsin
  thesensibleworldwereastateoffluxandnoneofthemremained,but
  thattheuniversalwasapartfromtheseandsomethingdifferent。And
  Socratesgavetheimpulsetothistheory,aswesaidinourearlier
  discussion,byreasonofhisdefinitions,buthedidnotseparate
  universalsfromindividuals;andinthishethoughtrightly,innot
  separatingthem。Thisisplainfromtheresults;forwithoutthe
  universalitisnotpossibletogetknowledge,buttheseparationis
  thecauseoftheobjectionsthatarisewithregardtotheIdeas。His
  successors,however,treatingitasnecessary,iftherearetobe
  anysubstancesbesidesthesensibleandtransientsubstances,that
  theymustbeseparable,hadnoothers,butgaveseparateexistence
  totheseuniversallypredicatedsubstances,sothatitfollowedthat
  universalsandindividualswerealmostthesamesortofthing。Thisin
  itself,then,wouldbeonedifficultyintheviewwehavementioned。
  Letusnowmentionapointwhichpresentsacertaindifficulty
  bothtothosewhobelieveintheIdeasandtothosewhodonot,and
  whichwasstatedbefore,atthebeginning,amongtheproblems。Ifwe
  donotsupposesubstancestobeseparate,andinthewayinwhich
  individualthingsaresaidtobeseparate,weshalldestroy
  substanceinthesenseinwhichweunderstand’substance’;butifwe
  conceivesubstancestobeseparable,howarewetoconceivetheir
  elementsandtheirprinciples?
  Iftheyareindividualandnotuniversal,arealthingswill
  bejustofthesamenumberastheelements,andbtheelements
  willnotbeknowable。Foraletthesyllablesinspeechbe
  substances,andtheirelementselementsofsubstances;thentheremust
  beonlyone’ba’andoneofeachofthesyllables,sincetheyare
  notuniversalandthesameinformbuteachisoneinnumberanda
  ’this’andnotakindpossessedofacommonnameandagainthey
  supposethatthe’justwhatathingis’isineachcaseone。Andif
  thesyllablesareunique,sotooarethepartsofwhichthey
  consist;therewillnot,then,bemorea’sthanone,normorethanone
  ofanyoftheotherelements,onthesameprincipleonwhichan
  identicalsyllablecannotexistinthepluralnumber。Butifthisis
  so,therewillnotbeotherthingsexistingbesidestheelements,
  butonlytheelements。
  bAgain,theelementswillnotbeevenknowable;fortheyare
  notuniversal,andknowledgeisofuniversals。Thisisclearfrom
  demonstrationsandfromdefinitions;forwedonotconcludethat
  thistrianglehasitsanglesequaltotworightangles,unlessevery
  trianglehasitsanglesequaltotworightangles,northatthisman
  isananimal,unlesseverymanisananimal。
  Butiftheprinciplesareuniversal,eitherthesubstances