因此,很显然,只有当换位可能时,循环的交互的证明才可能产生;在其他三段论中,它们的使用情况一如上述。在它们之中也会出现用有待于证明的东西来进行证明的情况,我们通过设定C述说A证明C述说B、B述说A,我们又通过这些前提证明C述说A。所以,我们是使用了结论来进行证明。
在否定三段论中,交互证明是这样产生的。让B属于所有C,A不属于任何B,结论是,A不属于任何C。如果反过来要求确立以前所设定的A不属于任何B,则我们要有前提A不属于任何C,C属于所有B;这样,前提BC就颠倒了。另一方面,如果要求确立B属于C,则前提AB一定不能再像以前那样换位(因为前提“B不属于任何A”与“A不属于任何B”是相同的);但我们必须设定B属于A所不属于其任何部分的事物的全体。让A不属于任何C(它是以前的结论),设定B属于A所不属于其任何部分的事物的全体,则B必定属于所有C。
这样,在三个命题中,每一个都变成了结论,这就是循环证明,即设定结论以及一个前提的换位,由此推论出余下的前提。
在特称三段论中,全称前提不能通过其他前提得到证明,但特称前提却可以。全称前提不可能被证明是很显然的。因为全称前提是通过全称前提证明的,但结论不是全称的。而我们必须从结论及另一个前提中得出证明(此外,如果前提可以互换,则根本不会有三段论产生,因为两个前提都变成了特称的)。但特称前提是可以证明的。设定通过B
证明A述说于有些C。如果设定B属于所有A,结论不变,则B属于有些C,因为这是第一格,中词是A。
如果三段论是否定的,则全称前提不可能被证明,原因如同上述。但特称前提是可以证明的。如果AB可以像在全称三段论中那样转换,即B属于A不属于其有些部分的事物的有些部分,否则,就不能产生三段论,因为特称前提是否定的。
在第二格中,肯定命题不能以这种方式证明、但否定命题却可以。肯定命题不能被证明,因为两个前提并不都是肯定的,结论是否定的,而肯定命题只能为两个都是肯定的前提所证明。否定命题可作如下证明。让A属于所有B,但不属于任何C,结论是B不属于任何C。那么,如果设定B属于所有的A,不属于任何C,则A必定不属于任何C,因为这是第二格(中词是B)。如果设定AB是否定的,另一个前提是肯定的,那么这就是第一格。因为C属于所有A,B不属于任何C,所以B不属于任何A,因而A不属于任何B。这样,根据结论和一个前提,三段论不能成立。但如果再设定一个前提,则三段论就可以成立。
如果三段论不是全称的,则全称前提不能被证明(原因如同上述),但当全称陈述是肯定的时,特称前提可被证明。让A属于所有B,但不属于所有C,结论是BC。那么,如果设定B属于所有A,但不属于所有C,则A不属于某个C(中词是B)。但是,如果全称前提是否定的,前提AC不可能通过AB的换位得到证明,因为由此可推出,要么一个,要么两个前提变成了否定的,所以三段论不能成立。但可以用在全称三段论中所使用的相同方法来证明它,即设定A属于某种B不属于的东西。
在第三格中,如果设定两个前提都是全称的,则交互证明不可能,因为全称命题只能通过全称前提得到证明。在这个格中,结论总是特称的;所以很显然,全称前提根本不可能在这个格中得到证明。但是,如果一个前提是全称的,另一个前提是特称的,则交互证明有时可能,有时不可能。当我们设定两个前提都是肯定的,小前提是全称的时,是可能的,当另一个前提是全称的时,则不可能。让A属于所有C,B属于某个C,结论是AB。那么,如果设定C属于所有A,就可以证明C属于某个B,但不能证明B属于某个C。同样必然的是,如果C属于某个B,B必定也属于某个C,但“X属于y”并不与“y属于X”相同;我们必须进一步设定,如果X属于某个y,则y也属于某个X。如果我们设定了这一点,则三段论就不再是从结论及另一个前提中产生的。如果B属于所有C,A属于某个C,则在设定C属于所有B,A属于某个B之后,前提AC就能得到证明。因为如果C属于所有B,A属于某个B,A就必定属于某个C,B是中词。
当一个前提是肯定的,另一个前提是否定的,肯定前提是全称的时,另一个前提就能得到证明。让B属于所有C,A不属于某个C,结论是,A不属于某个B。所以,如果进一步断定C属于所有B,则必然可以推出A不属于某个C,中词是B。但当否定前提是全称的时,另一个前提便不能得到证明。除非像在前一个例子中那样,设定当一个词项不属于某个事物,另一个词项却属于另个事物。例如,如果设定A不属于任何C,B属于某个C,结论是A不属于某个B。所以,如果设定C属于某种A所不属于的事物,则C必然属于某个B。不可能用将全称前提换位的方法证明另一个前提,因为无论何种情况,三段论都不成立。
因此,很显然,在第一格中,交互证明既通过第三格也通过第一格而产生。当结论是肯定的时用第一格,当结论是否定的时用第三格;因为已经设定,如果一个词项不属于某事物的任何一个,则另一个词项属于那个事物的全体。在中间格中,当三段论是全称的时,交互证明无论是通过这个格自身还是通过第一格都是可能的;当它是特称的时,则既可以借助这个格,也可以借助最后格;在第三格中,一切证明都只能通过这个格自身。很显然,在第三格以及在中间格中,不通过这些格自身而产生的三段论,要么不能根据循环论证证明,要么是不完善的。