在这样得到了质量的明确观念之后,我们就从实验中发现物体的相对质量大致是一个常数。于是我们可以提出一个假设说:这个近似的常数是严格真实的,或至少有高度准确的真实性,这样,我们就可以把质量M当作长度L、时间T以外的第三个基本单位。从这个假设得来的无数推论在J.J.汤姆生与爱因斯坦的时代以前,同观测与实验是高度精确符合的。所以这个假设是经过充分的验证的,除了非常特殊的情况外,它还是有效的。
质量既然可以用惯性来量度,剩下来的问题就是找出质量与重量的关系了。所谓重量也就是把物体拉向地球的吸引力。这问题也为牛顿所澄清了。
史特维纳斯和伽利略的实验,表明两个重量不同的物体,W1与W2以同样的速度落地。物体的重量就是地球引力所产生的力,实验的结果证明重力所生的加速度a1与a2是相同的。根据上面所说的质量的定义,两物体的相对质量m1与m2可用以下的关系来确定:
m1=W1/a1及m2=W2/a2,
a1=W1/m1及a2=W2/m2。
现在我们了解,任何公式的玩弄或任何形而上学的考虑(如经院哲学由亚里斯多德那里得来的)都不能导出两个自由落体的加速度的关系。等到史特维纳斯和伽利略用落体进行实验,才证明a1=a2是一个事实。但是,这一点既经证明之后,从方程式所规定的质量、重量与力的定义便得:
W1/m1=W2/m2或W1/W2=
即两物体的重量与它们的质量成正比例。这是一个真正惊人的结果。牛顿指出,这个结果要求重力必须“是从一个原因而来的,这个原因并不是按照其所作用的质点表面的数量而起作用(机械的原因常是这样的),而是按照物体所含的实际质量的数量起作用的”。事实上,牛顿的天文学研究的结果,证明重力的作用必定“贯彻到太阳的中心和行星的中心,而不丝毫减少它的力量”。
伽利略的实验没有达到,也不能达到很大的精确度。巴利安尼更仔细地重新进行了这个实验。他从一点让一个铁球和一个同样大小的蜡球同时坠落。他发现当铁球已落了50尺而到地时,蜡球还差1尺。他正确地解释这个差异是由于空气的阻力,这种阻力虽然对两个球体是一样的,但对于抵抗重量较小的蜡球更为有效。牛顿对于这个结果更加以精密的考察。他从数学上证明一个摆锤摆动的时间必定与其质量的平方根成正比,与其重量的平方根成反比。他又用了不同的摆锤来做仔细而精确的实验,摆锤的大小相同,以使它们所受的空气的阻力相同。有的摆锤是各种物质的实体,有的是空球装上各种液体或谷类的颗粒。在所有的情况下,他都发现在同一地点,同长的摆在度量误差的极小范围之内,摆动时间是相等的。这样,牛顿就以更大的精确度证实了重量与质量成正比的结果,而这个结果本来是可由伽利略的实验推出来的。
数学方面的改进
把数理力学应用于天文问题的一个直接结果,便是需要改进研究中所用的工具——数学。因为这个缘故,刻卜勒、伽利略、惠更斯、牛顿诸人工作的时代,也就是数学知识与技术进步很大的时代。
牛顿与莱布尼茨以不同的形式发明了微分学。发明的先后,后来虽有争执,但看来都是独立发明出来的。变速观念的出现,要求有一种方法来处置变量的变化率。一个不变的速度可以用在时间t所经过的空间S来量度;不论s与t的大小如何,s/t一量是一定的。但是如果速度是变化的,那么要找某一瞬间的速度值,只能就一个差不多觉察不出速度变化的极短的时间来量度在这个时间内经过的空间。当s与t无限地缩小,而成为无限小时,它们的商数即是那一瞬间的速度,莱布尼茨把这一速度写成ds/dt,而叫做s对于t的微分系数。牛顿在他的流数法里,把这个数量写作s,这个写法用来不大方便,现在已被莱布尼茨的写法代替了。我们在这里不过是拿空间与时间来做例子罢了。其实任何两个量,只要是彼此依赖,都可用同样的方法来处理。x对于y的变化率都可写作莱布尼茨的记法dx/dy或牛顿的记法x。
逆转的计算,即微分的总和,或从变率去计算变量本身的方法,叫做积分,常常是比较困难的工作。在研究某些问题时,如牛顿要从球体中亿万个质点的引力去计算整个球体的引力,就得用积分法。阿基米得用了类似的方法去计算面积与容积,但他的方法由于远远超过了他那时代,所以后来就失传了。
含有微分系数的方程式叫做微分方程式。很多物理的问题都可表达为微分方程式;困难通常在于求它们的积分,从而求出它们的解答。有一个事实说明牛顿了解这个原理:他算出了一张数字表,来表达光线在大气中的折射,而所用的方法则无异于列出光线路径的微分方程式。
在《原理》中,牛顿把他的结果改成欧几里得几何学的形式,其中许多结果可能是通过笛卡尔坐标与流数法求得的。微分学迟迟才为人知道;但在莱布尼茨和别尔努利(Bernouilli)所赋予的形式中,微分学却是现代纯数学和应用数学的基础。
牛顿在数学的许多别的分支中也有不少贡献。他确立了二项式定理,提出了很多方程式理论,而且开始使用字母符号。在数理物理学中,除了已经叙述过的动力学和天文学外,他还创立了月球运行的理论,算出了月球位置表,由这个表可以预测月球在恒星间的位置。这一工作成果对于航海有无上价值。他创立了流体动力学,包括波的传播理论,且对流体静力学作了很多的改进。